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Abstract. Recent years have witnessed an increase in interest in lever-
aging generative models for de novo molecular design in drug discovery.
Many State-of-the-Art (SotA) models incorporate the 3D structural in-
formation of the molecule, particularly atomic spatial coordinates. How-
ever, such approaches face challenges integrating SE(3) equivariance when
trained on coordinates. This work explores the use of the distance matrix
for molecular structures, natively SE(3) invariant, avoiding whatever the
issue. Experimental evaluation shows that our proposed approach signifi-
cantly improves upon MiDi, a SotA 3D molecule generator.

1 Introduction

De novo molecular design involves creating new chemical molecules with spe-
cific properties, a critical task in drug discovery and material science fields.
Given the complexity related to the chemical space, where only a small sub-
set of molecules are both chemically feasible and possess desirable properties,
computational methods have become essential. As traditional approaches are
slow and costly, recent advancements in artificial intelligence and computational
power have led to significant progress in applying generative models to molecular
design [1]. With the advent of deep generative models utilizing graph represen-
tations, some methods incorporate only structural topology [2, 3], while others
include a richer representation in 3D space [4, 5, 6]. When considering 3D coordi-
nates, several challenges arise. One of the primary issues is achieving rotational
and translational invariance, also known as SE(3) invariance, as molecular prop-
erties remain unchanged under such transformations. Models must effectively
encode 3D spatial information while avoiding sensitivity to arbitrary coordinate
system choices [7]. Secondly, methods must also consider the natural symmetries
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in graph representations. Addressing these issues often involves leveraging tech-
niques like equivariant neural networks or graph-based representations tailored
to preserve geometric invariances [8], although they come with some challenges.
These models are computationally intensive and require complex operations, like
spherical harmonics for encoding equivariance, making them difficult to imple-
ment and scale for large datasets. The approach proposed in [9] focuses on the
conformation, splitting its generation into finding local structures and torsion
angles. This task has also been tackled with Diffusion Models by applying Gaus-
sian noise to 3D coordinates [10, 6]. These models explicitly build in equivariance
in the diffusion process using a zero Center of Mass (CoM) Gaussian distribu-
tion and using SE(3) equivariant features as input to the denoising model. Still,
[10] doesn’t include the generation of the topology, while [6] (MiDi) is missing
SE(3) equivariance in the training target. More specifically, the Graph Trans-
former [11] in MiDi is trained to predict the centered coordinates of atoms,
making the target translation invariant but not rotation invariant.

This work introduces D4, a Distance and Discrete Denoising Diffusion Model
based on MiDi [6], aiming to enhance chemical validity in molecular generation
by leveraging atomic distances as a proxy for spatial information. Incorporat-
ing distances between atoms is intuitively beneficial, as spatial arrangements
critically influence a molecule’s physical and chemical properties. Unlike 3D
atomic coordinates [10, 6] which require SE(3) equivariant architectures, this
work employs the natively invariant distance matrix, simplifying the overall ar-
chitecture. The distance matrix approach offers additional advantages, such as
leveraging bond-dependent atomic distances (e.g., shorter triple bond lengths
versus single bonds) to improve conformer accuracy. While coordinate-based
models implicitly handle distances, explicitly integrating distance information
enhances information flow and improves results. Appendices, as Supplementary
Material, are available at: https://www.math.unipd.it/~drigoni/files/ESA
NN2025-D4-Supplementary.pdf.

2 Our Approach: Diffusion on Distances

Motivated by the shortcomings of previous methods, we introduce D4, a Distance
and Discrete Denoising Diffusion model based on MiDi [6]. D4 generates the
molecular structure and replaces 3D coordinates with pairwise distances D ∈
Rn×n, which are natively SE(3) equivariant features. Further motivation derives
from the common knowledge in chemistry that bond distances are closely related
to bond types. Denoising Diffusion Probabilistic Models (DDPMs) [12] learn
a distribution of data by reversing a noise process, which gradually corrupts
data points. A diffusion transition for distances is defined as q(Dt|Dt−1) =
N (Dt; αtDt−1, σ

2
t I), with αt, σt being time-dependent parameters from the

Cosine Schedule [13], defined as ᾱt = cos2(0.5π(t/T + s)/(1 + s)) with a small
s, where ᾱt =

∏t
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t − α2
t . A requirement of DDPMs is to

have stationary distributions that are simple and known. In the gaussian case
q(DT ) = N (0, I) for T → ∞. Specifically, the objective of DDPMs is to learn



the reverse of the diffusion process through a neural network as pθ(Dt−1|Dt) =
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t ). Regarding the

generation of the graph structure, we start from the diffusion and denoising
processes of [6], which are based on Discrete Diffusion [14, 2]. For a molecular
graph G = (X,C,E), atoms, formal charges and bonds are modeled as one-hot
encoded node and edge labels X∈{0, 1}n×dx , C∈{0, 1}n×dc , E∈{0, 1}n×n×de ,
where dx, dc, de are the number of types of atoms, formal charges, and types of
bonds, respectively. The non-existing bond is a bond type indexed as E[0]. These
evolve through three Markov Chains of the form: (i) q(Xt|Xt−1) = Xt−1Q

X
t ;

(ii) q(Ct|Ct−1) = Ct−1Q
C
t ; (iii) q(Et|Et−1) = Et−1Q

E
t ; where QX

t ∈ [0, 1]dx×dx ,
QC

t ∈ [0, 1]dc×dc and QE
t ∈ [0, 1]de×de are the three time-dependent transition

matrices [14], which collapse labels to follow uniform distributions at T → ∞.
Regarding the denoising of edges, differently from other works [2, 6], we split
edge prediction into two stages: first, our model predicts the adjacency matrix
A = 1 − E[0] with probabilities pAθ , which signifies the presence of a bond or
not; then, only for existing bonds, the probabilities pEθ classifies these entries
in a single, double and triple bond. We denote classes of existing bonds as the
selection E[A] of edges where Aij = 1. The motivation lies in balancing the
sparsity in the training signal for edges, which is common in molecular graphs.
Thus the denoising model predicts the true labels as probabilities pXθ , pCθ , p

A
θ , p

E
θ .

The full diffusion and denoising processes assume the following form:

q(Gt|Gt−1) =
(
N (Dt; αtDt−1, σ

2
t I), Xt−1Q

X
t , Ct−1Q

C
t , Et−1Q

E
t

)
, (1)

pθ(Gt−1|Gt) = pθ(Xt−1|Gt)pθ(Ct−1|Gt)pθ(Et−1|Gt)pθ(Dt−1|Gt). (2)

We share the same architecture as MiDi [6] taking as input the graph Gt, but
removing the coordinates R from the model. Using distances as a way to obtain
the 3D conformation circumvents completely issues related to SE(3) equivari-
ance. We integrate D into the Graph Transformer architecture [11], and avoid
the special treatment given to coordinates in [10, 6], keeping the model simple.
The network, with parameters θ, can be trained through the loss function:

L(G, Ĝt) = λx CE(X, pXθ ) + λe

(
BCE(A, pAθ ) + CE(E[A], pEθ )

)
+

+λc CE(C, pCθ ) + λd∥D̂θ −D∥2,
(3)

where CE and BCE are, respectively, the Cross-Entropy and the Binary Cross-
Entropy, λ variables are losses weights. From the distance matrix D, not neces-
sarily satisfying the triangle inequality, we recover the 3D coordinates R using
the Multidimensional Scaling (MDS) algorithm [15]. It computes the eigenvec-
tors of the Gram matrix of D, and returns the three with the highest associated
eigenvalues as coordinate matrix R ∈ Rn×3.

3 Experimental Assesment

Dataset and Evaluation Metrics All models are evaluated on the QM9 and
GDB13 datasets, split into 75% training, 15% validation, and 10% testing. The



QM9 dataset [16] is a widely adopted benchmark, containing 134K small organic
molecules with up to nine heavy atoms. The GDB13 dataset [17] contains about
one million molecules with up to 13 heavy atoms. In this work, we adopt a
random subset of 169K molecules. More details are reported in Appendix A.

The final testing uses the best checkpoint based on denoising loss from the
validation set, with results from a 10K molecule sample. Our model and MiDi
results are shown as averages with 95% confidence intervals across 5 generated
example sets. Several well-known metrics [18] in literature are considered to
evaluate the models’ generation quality: (i) Validity : assesses the number of
model’s generated structures that are chemically valid1. (ii) Uniqueness: is the
ratio of unique generated molecules over all molecules. This metric is essential to
verify the occurrence of the model collapse issue; (iii) Novelty : is the percentage
of generated molecules that are not in the training set, measuring the gener-
alization power of the model. (iv) Distance Error : measures the Wasserstein
distance among the frequencies of distances in the test set and those generated
by the model. More details are reported in Appendix B.

Model Selection and Implementation Details Model selection was per-
formed only on QM9 using a grid search strategy focusing on the learning rate
and the loss function weights (Equation 3). Then, the same values are also ap-
plied to GDB13. The former was tested for values in the range of 0.001 and
0.01, refining incrementally by 0.002. For loss function weights, we started from
the configuration of MiDi, then explored variations with steps of ±0.5.

All the models considered in this work have been trained with a batch size of
1024 and for 2000 epochs. For reproducibility, the remained of the experimental
setup follows the proposal in MiDi. The results from the grid search yielded
a value of 0.002 for the learning rate and the following loss weights: λx = 1,
λc = 1, λe = 2 and λd = 1. In this work, hydrogens are not considered [6, 7, 2],
and all the pre-processing and post-processing stages performed on molecules
are done using RDkit. Our proposed model consists of 20,003,660 parameters
vs. the 20,124,219 of MiDi. More details are reported in Appendix C. The
implementation code is available at: https://github.com/MrcBalla/D4-code.

Results and Discussion Table 1 compares our model’s performance with
the SotA MiDi approach across the QM9 and GDB13 datasets. Notably, both
models exhibit very similar performance on these datasets considering the Va-
lidity and Uniqueness metrics. However, on QM9 our proposed model shows less
Novelty than MiDi. In the literature, there is an emphasis on maximizing Nov-
elty. However, this is not entirely applicable to the QM9 dataset, as noted by the
authors of [2], because QM9 is a curated dataset comprising specific molecules
that satisfy certain constraints. Within these constraints, QM9 serves as an ex-
haustive enumeration of molecular types, and thus, having a high Novelty might
suggest that the learning architecture is struggling to capture the chemical space
adequately. Based on this, overall, we can conclude that our model’s generation
capability matches that of MiDi regarding the molecule’s topology structures.

1RDkit is used to verify the molecule’s structure: https://www.rdkit.org/



Fig. 1: KDE of triple bond distances.

Fig. 2: Examples of molecules generated
by our model on the QM9 dataset, shown
in 2D and 3D.

Model
QM9 GDB13

Validity Uniqueness Novelty Dist. Error Validity Uniqueness Novelty Dist. Error

MiDi 99.5±0.1 95.8±0.2 49.2±0.0 0.008±0.003 99.7±0.1 99.9±0.1 99.9±0.1 0.026±0.008

Ours 99.5±0.1 95.7±0.1 41.2±0.4 0.005±0.001 99.8±0.1 99.9±0.1 99.9±0.1 0.004±0.003

Table 1: Comparison between our approach and MiDi.

Model
QM9 GDB13

Single Double Triple Single Double Triple

MiDi 0.017±0.003 0.027±0.007 0.066±0.029 0.066±0.006 0.081±0.028 0.115±0.024

Ours 0.009±0.002 0.011±0.001 0.269±0.009 0.014±0.003 0.048±0.027 0.087±0.031

Table 2: Distance comparison between our approach and MiDi.

Bigger improvements are found for the Distance Error metric where our
model outperforms MiDi in both datasets. A closer inspection of Table 2, re-
porting the Distance Error for each bond type in QM9 and GDB13, highlights
that our model outperforms MiDi in all cases except for triple bonds in the QM9
dataset. However, a closer look at Figure 1, displaying the KDE of the distances
of each model compared to that in the test set, reveals that both our approach
and MiDi perform poorly and are not able to detect the two modalities. One hy-
pothesis is that the model may struggle to learn the triple bond type. However,
a detailed analysis of the predicted atom and bond type frequencies, provided
in Appendix D, suggests otherwise. Thus we argue that this could be caused by
two main facts: (i) triple bonds represent about the 3% (1% in GDB13) of all the
bonds in the dataset making the learning task difficult; and (ii) there is in, both
double and triple bond distance distribution, a mode at 1.2Å which complicates
identifying distinct patterns. More KDE plots are reported in Appendix E.

Figure 2 showcases some example molecules generated by our model trained
on QM9 which have been verified by computational chemistry experts. Example
molecules generated from the GDB13 dataset can be found in Appendix F.

4 Conclusions and Future Work

Recent advances in deep generative models have improved molecular modelling
using 3D coordinates of atoms, although rotational invariance challenges remain.



This work proposes D4, an SE(3) model that leverages diffusion on distances
to reconstruct 3D molecular structures, generating chemically valid molecules
surpassing a SotA approach. Future work will condition distances on bond
types within the diffusion framework to enhance accuracy, especially for triple
bonds, and inserting prior knowledge about distances in the diffusion model.
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