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Abstract. The automatic detection of solar panels from aerial im-
agery is highly desirable for energy planning and urban development in
the Netherlands, where such data has not been extensively explored. To
address this gap, we publicise a new annotated dataset, tailored for the
Dutch landscape, and compare several state-of-the-art semantic segmenta-
tion models. While traditional approaches primarily utilize RGB data, we
incorporate elevation and angle information in the model to analyse its po-
tential benefit. We achieved satisfactory performance for automated solar
panel detection and segmentation, with surface estimates only diverging
by 1m within a 900m2 area. The additional elevation information does not
improve the performance significantly, but is more robust in certain cases.

1 Introduction
The use of renewable energy is critical for energy planning and urban develop-
ment [1]. To assess the adoption of solar energy in Emmen in the Netherlands
the municipality is investigating the automatic detection of solar panels from
aerial imagery. A system detecting solar panels from aerial imagery would allow
for evaluation of solar panel installation trends over time, supporting better pol-
icy development for future sustainable energy initiatives. While the automatic
detection of objects, such as roads and buildings, in aerial imagery has gained
significant attention in recent years [2, 3], the segmentation of solar panels is a
relatively new field, that nevertheless has produced promising results [4, 5].
Initial work in solar panel detection include Support Vector Machine classifiers
[6] applied to regions of interest extracted from satellite images using the Maxi-
mally Stable Extremal Regions algorithm. Since these methods only identify the
presence of solar panels, subsequent approaches used random forests for pixel seg-
mentation to obtain more accurate size and shape estimates [7]. Convolutional
Neural Networks (CNNs) began replacing traditional classifiers [8] with meth-
ods such as AlexNet, and SegNet [9] learning features automatically end-to-end,
capturing multi-stage information from aerial images. Recent architectures like
U-Net, DeepLabV3, and the Feature Pyramid Network (FPN) [10, 11, 12] were
specifically designed for semantic segmentation tasks and became the standard
for generating high resolution segmentation masks from aerial images as they
can process entire images, rather than smaller patches, which was a limitation
of earlier methods.
In this study, we extend solar panel segmentation to incorporate both RGB and
elevation data. The aerial imagery dataset1, captured at a resolution of 7.5
cm per pixel, is supplemented with elevation data to provide height and tilt

1Annotated aerial imagery dataset available at https://doi.org/10.5281/zenodo.
14860030
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Fig. 1: An example input image (left) and the output ground truth mask (right).

information for each pixel. We analyse the effectiveness comparing the modified
models with baseline methods on our real-world data set captured in the north
of the Netherlands, to evaluate whether incorporating elevation and tilt data
improves segmentation performance.
2 Data
USA datasets for solar panel segmentation [13, 14] cannot be used directly, due
to large differences in landscape and foliage of the Netherlands. The government
of Emmen produces an aerial image taken from a small plane every year under
similar conditions. The spatial resolution of an image taken by a plane is much
higher compared to a satellite (7.5cm per pixel instead of 30cm), resulting in
sharper and more detailed images. The area Emmen spans 346.26km2 of which
four regions were selected including different types of buildings and vegetation
totalling 18.55km2. These areas were subdivided in cells of 30 by 30 meters,
resulting in 20.618 squares of 900m2. The solar panels in these areas were man-
ually labelled with polygons, resulting in 4389 unique objects. The ratio of solar
panel surface versus total area is very small. Therefore we only include 224 by
224 pixel RGB images from cells that either contain or are close to a cell with
solar panels, to avoid large class imbalance. The resulting dataset contains a
total of N=5327 annotated images of which 1743 contain solar panels.
We incorporate vertical placement and angle (tilt) from the Actueel Hoogtebe-
stand Nederland (AHN) dataset2. It includes high resolution digital elevation
models (DEMs) and LiDAR-derived point cloud data, offering precise elevation
measurements for every half-meter land parcel relative to the Normaal Ams-
terdams Peil (NAP). The AHN covers the entire country with a minimum of
10 measurements per square meter obtained by plane-mounted laser scanning
transformed into 3D point clouds and grids. The current version AHN4 was
collected over the years 2020, 2021, and 2022. The AHN4 DTM ground level
grid is generated using a Squared IDW method. To complement the height
information the tilt is calculated using a 3 × 3 sliding window according to
θ = tan−1

(√
(dz/dx)2 + (dz/dy)2

)
, where dz

dx and dz
dy denote the rate of change

in the horizontal and vertical directions from the centre cell to each adjacent
cell. The dataset3 is augmented during training at the beginning of a new epoch
with a probability paug for flipping, rotation or a brightness change. In case of
a rotation the degree is determined uniformly between [−30, 30].

2https://www.pdok.nl/introductie/-/article/actueel-hoogtebestand-nederland-ahn
3All data and models are public at https://doi.org/10.5281/zenodo.14860030
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3 Methods
We use EfficientNet [15] as the encoder backbone for its beneficial trade-off be-
tween computational cost and performance. Concretely, EfficientNet-B0 serves
as the baseline, while B2 and B4 variations are explored for segmentation per-
formance improvements. Pre-trained weights are utilized to leverage transfer
learning. For segmentation, the U-Net [10], DeepLabV3 [11], and FPN [12] are
used as decoders. U-Net incorporates skip connections to merge features from
different stages of the encoder, enabling accurate boundary predictions, making
it particularly effective for tasks requiring precise delineation of small or irreg-
ular objects such as solar panels. DeepLabV3 applies Atrous Spatial Pyramid
Pooling (ASPP) to capture contextual information at multiple scales, which is
advantageous for handling the varying sizes and spatial arrangements of solar
panels within complex urban environments. FPN constructs a feature pyramid
to extract and leverage information from multiple resolutions, improving the
detection of small objects while maintaining the performance on larger features.
All decoder outputs are upsampled to match the original resolution.
The standard input to these architectures is an RGB tensor Xi ∈ R⟨Hi,Wi,Ci⟩,
where Hi, Wi and Ci represent the height, width and channels. Explicitly in
our case with RGB this leads to ⟨224, 224, 3⟩. To incorporate the two additional
channels for elevation information we employ data fusion [16] by expanding the
input tensor to shape ⟨224, 224, 5⟩. This fusion enables the model to learn with
additional spatial terrain features, while maintaining computational efficiency.
Separate pathways for RGB and elevation data would lead to excessive model
complexity and much slower training times, and an preliminary experiment sug-
gested that after 200 epochs there was no discernable difference between the two
approaches. Instead, the architecture is only minimally modified by replacing
the first convolutional filter F1, originally designed for 3-channel input, by one
with five channels. To achieve this, the pre-trained weights were first loaded into
the model, and the weight kernel corresponding to the red channel was copied
over an extra two times to handle the new channels. The rest of the pre-trained
encoder remains unchanged and the entire model is trained as normal. In the ex-
periments we evaluate four model variations: models trained on RGB data only,
models including height information, models incorporating slope information,
and models using both height and slope data.
4 Experiments
In this work, we use binary cross-entropy (BCE) loss to train the model for the
pixel-wise binary classification task of image segmentation. BCE computes the
average dissimilarity between the predicted segmentation mask and the ground
truth. For N samples, it is defined as:

Lmask = − 1
N · 2242

N∑
i=1

∑
x,y

[
Si[x, y] log(Pi[x, y])+(1−Si[x, y]) log(1−Pi[x, y])

]
where Si[x, y] ∈ {0, 1} indicates the ground truth label for pixel (x, y), and
Pi[x, y] ∈ [0, 1] is the predicted probability.



In order to comprehensively evaluate the performance, we employ 5-fold strat-
ified cross-validation and assess the models using three key metrics: accuracy,
mean Intersection over Union (mIoU) and mean absolute area error (MAAE):

mIoU = 1
N

N∑
i=1

Si ∩ Pi

Si ∪ Pi
, MAAE = 1

N

N∑
i=1

∣∣∣Ai − Âi

∣∣∣ ,

where Ai and Âi denote the area and estimated area respectively. The mIoU
measures spatial accuracy by evaluating the overlap between predicted and
ground truth masks, ensuring the model captures the target region while penaliz-
ing false positives and negatives. MAAE quantifies size precision by focusing on
the absolute difference in object area between true Ai and predicted Âi, making
it particularly useful for tasks like solar panel size estimation. Additionally, ac-
curacy measures whether the model correctly identifies the presence of any solar
panel in an image, providing a binary image-level evaluation. In the experiments
we trained the models for 200 epochs, used a fixed learning rate of η = 0.0005
and batch size of 64, as this showed good convergence and performance for all
models tested. For the ADAM optimizer we used ρ1 = 0.9 and ρ2 = 0.999 and
set the augmentation probability to paug = 0.5. For each model, we chose the
epoch with the highest training mIoU and reported the metrics for this epoch.
5 Results and Discussion
Results in term of key metrics are summarized in Table 1 and demonstrate the
effectiveness of the semantic segmentation models for detecting solar panels in
aerial imagery. The U-Net and FPN architectures outperformed DeepLabV3,
which is hence omitted from the table. It struggled with the data, achieving a
lower mIoU of 0.740-0.793 and a higher MAAE of 1.726-1.299, with the best val-
ues being achieved by the EfficientNet-B4 variant with slope information (S). We
could not find an obvious reason and increasing the number of parameters did
not improve the scores. The U-Net and FPN models consistently achieved high
mIoU values above 0.8 and an MAAE below 1.3 square meters per 900m2 image.
For all models tested, the performance is very robust with between fold variation
within [0.006,0.021]. The choice of decoder architecture is more significant than
the encoder used, across all the metrics. While the U-Net achieves the high-
est evaluation performance, the improvement over the FPN is not significant.
Similarly to DeepLab increasing the depth of the EfficientNet backbone (from
B0 to B4) did not return significantly higher performance. Concretely, for the
baseline model with U-Net decoder using the EfficientNet-B4 with 17.1 million
parameters compared to the EfficientNet-B0 model with 4.1 million parameters
only improved the mIoU from 0.825 to 0.838. As the former requires about 10
times as much FLOPS, the 1.57% performance increase does not justify the cost.
The inclusion of elevation information, whether height (H), slope (S), or both
(HS), almost always improved performance over the baseline RGB-only models.
Across all model variations, those utilizing slope information performed best on
average, achieving the highest mIoU and the lowest MAAE in most configu-
rations. While these improvements are consistent, they are on average not as
substantial as one might have expected from adding complementary information.



Table 1: Summary performance of different architectures and encoders. Abbreviations
indicate whether the baseline (B), height (H), slope (S), or both height and slope (HS)
were used to incorporate the AHN information. Arrows indicate the optimum.

Train metrics Validation metrics
Architecture Acc↑ mIoU↑ MAAE↓ Acc↑ mIoU↑ MAAE↓

U
-N

et

B - EfficientNet-B0 0.979 0.912 0.366 0.938 0.825 1.154
H - EfficientNet-B0 0.985 0.913 0.361 0.950 0.828 1.140
S - EfficientNet-B0 0.979 0.913 0.382 0.945 0.833 1.139

HS - EfficientNet-B0 0.977 0.912 0.370 0.943 0.830 1.117
B - EfficientNet-B2 0.992 0.919 0.332 0.959 0.826 1.129
H - EfficientNet-B2 0.989 0.919 0.340 0.958 0.830 1.180
S - EfficientNet-B2 0.989 0.921 0.330 0.961 0.838 1.055

HS - EfficientNet-B2 0.991 0.918 0.337 0.960 0.833 1.096
B - EfficientNet-B4 0.995 0.929 0.275 0.965 0.838 1.031
H - EfficientNet-B4 0.995 0.929 0.282 0.967 0.839 1.056
S - EfficientNet-B4 0.996 0.931 0.273 0.970 0.843 1.025

HS - EfficientNet-B4 0.997 0.929 0.277 0.968 0.838 1.037

F
P

N

B - EfficientNet-B0 0.988 0.889 0.430 0.954 0.799 1.233
H - EfficientNet-B0 0.985 0.890 0.446 0.952 0.808 1.208
S - EfficientNet-B0 0.984 0.892 0.436 0.955 0.813 1.187

HS - EfficientNet-B0 0.986 0.889 0.448 0.956 0.806 1.292
B - EfficientNet-B2 0.992 0.903 0.371 0.960 0.815 1.212
H - EfficientNet-B2 0.991 0.903 0.376 0.956 0.816 1.198
S - EfficientNet-B2 0.987 0.904 0.388 0.953 0.821 1.169

HS - EfficientNet-B2 0.990 0.904 0.385 0.962 0.821 1.157
B - EfficientNet-B4 0.997 0.919 0.301 0.968 0.827 1.099
H - EfficientNet-B4 0.996 0.919 0.296 0.972 0.829 1.061
S - EfficientNet-B4 0.996 0.921 0.293 0.967 0.837 1.055

HS - EfficientNet-B4 0.997 0.919 0.296 0.969 0.829 1.052

However, models enhanced with elevation data did show greater robustness in
certain challenging scenarios. As illustrated in Figure 2 the AHN-based model
correctly segmented solar panels under shadow occlusion, where the baseline
RGB model struggled. Hence, the AHN model is able to utilize the elevation
information as the height and slope information helps deciding that a shadow
pixel is still a solar panel due to its location on the roof.
6 Conclusion and Future Work
In this work we demonstrate the effectiveness of semantic segmentation models
on our newly introduced aerial imagery dataset from the Netherlands. With a so-
lar panel area estimation error of around 1m per 900m2, our models are highly
suitable for practical applications, such as renewable energy planning and re-
source assessment. The inclusion of elevation data further enhance robustness
in challenging scenarios, emphasizing the potential of integrating spatial infor-
mation for more reliable segmentation outcomes. In future work we investigate
the encoding of shape constraints to capture solar panels even better [17].



RGB Ground truth RGB only RGB + HS
Fig. 2: An example where an AHN model outperforms the RGB only model
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