Implicit Neural Decision Trees

Francesco Splnnatol’Q’T, Antonio Matropietro” and Riccardo Guidotti? *

1 - University of Pisa, Italy
2 - ISTI-CNR Pisa, Italy

Abstract. Representation learning is a central topic in machine learning,
with significant efforts dedicated to encoding structured data such as
sequences, trees, and graphs for various downstream tasks. A branch of
these studies focuses on functional data analysis, which views data not
as discrete arrays but as continuous functions. When these functions
are parameterized using neural networks, they are called Implicit Neural
Representations (INR). INRs have been successfully applied to represent
diverse data types but, to the best of our knowledge, have not been used for
encoding decision models. This work addresses the novel challenge of using
INRs to represent decision trees. We introduce a tailored coordinate system
and train INRs to reconstruct decision trees with a loss function to minimize
node reconstruction errors. We benchmark implicit neural decision trees
on several datasets, showing that they can effectively represent individual
trees, and show potential extensions to tree forests through meta-learning.

1 Introduction

Representation learning for structured data is currently one of the most studied
topics in Machine Learning (ML) and Artificial Intelligence (AI). Various subfields
of ML aim to create representations of complex data types such as sequences,
trees, and graphs, enabling their use in various unsupervised and supervised
tasks [1]. Traditionally, signal data has been represented as arrays through
discrete coordinates: for instance, time series are vectors recorded over time,
while images are matrices of pixel intensities. Recently, the concept of modeling
data as functions has gained traction in functional data analysis [2], shifting the
focus from data to so-called functa, i.e., mappings treated as instances within a
dataset [3]. For example, a time series can be thought of as a function from the
timestep to its value, whereas an image can be represented as a mapping from 2D
pixel coordinates to RGB values. When a Neural Network (NN) parameterizes
such a function, it is called an Implicit Neural Representation (INR) [4]. INRs
have broad applicability across complex modalities such as audio, videos, 3D
scenes, and even arbitrary topological spaces [5]. This functional representation
offers advantages over array-based representations, including memory efficiency
and summarization of diverse data modalities through a unified architecture.

*Supported by: Fondo Italiano per la Scienza FIS00001966 MIMOSA, ERC-2018-ADG G.A.
834756 XAI, G.A. 101070212 FINDHR, EU NextGenerationEU programme, PNRR-PE-AI
FAIR, PNRR-SoBigData.it - Strengthening the Italian RI for Social Mining and Big Data
Analytics - Prot. TR13. T Authors contributed equally, first author chosen by coin toss.

Here, we address the novel challenge of representing predictive models by
investigating whether INRs can represent classifiers as parameters of an NN. In
particular, we focus on decision trees [6] due to their highly interpretable structure,
where inner nodes represent feature-based split, branches correspond to split
conditions, and leaf nodes indicate final decisions. This transparent decision-
making format allows users to trace how specific inputs lead to outputs. Hence,
representing decision trees as functional data enables a unified representation for
diverse downstream tasks, particularly generative induction [7]. This approach
could facilitate scalable model generation while preserving the transparency and
interpretability of decision trees. As a first step toward this goal, we evaluate
whether decision trees can be represented using INRs. To this aim, we define
Implicit Neural Decision Trees (INDTs) by introducing a tailored coordinate
system as input to the INR, which is trained to reconstruct the decision tree via a
loss function, minimizing the node reconstruction error. INDTs are benchmarked
by reconstructing decision trees from several datasets. Moreover, we propose
alternatives for representing ensembles of such trees through meta-learning [8].

2 Setting The Stage

Implicit Neural Representations. A signal is seen as a function x: C — X,
mapping coordinates ¢ € C to feature values x(c) € X. Therefore, the signal is the
collection of pairs, {c,z(c)}c.cc. Representing a signal through an INR requires
to learn fp, such that fy(c) = &, where 6 are the parameters of a NN [3]. For
example, in the image domain, ¢ are the pixel coordinates, i.e., its location, z(c)
its corresponding pixel value, i.e., its color and intensity in the RGB case. In this
setting, each INR is trained on a signal, e.g., a single picture, to minimize a given
loss: ming). L(z(c), fo(c)). In simple terms, the INR is trained to reproduce
data given its coordinates, e.g., an image from its pixel coordinates. In a way,
the INR creates this mapping by “overfitting” on a single instance.

Typically, fy is parameterized by a multilayer perceptron with positional
encodings or, more commonly, with sinusoidal activation functions (SIRENs) [4],
which have proven to be better for fitting high-frequency signals. Given a collec-
tion of functa, training a different function for each signal becomes increasingly
computationally expensive. Various meta-learning approaches have been applied
to provide an easier way to approximate collections of signals [3]. In the experi-
ments, we will focus in particular on a-MAML, an adaptive version of MAML [§]
incorporating an online hyperparameter adaptation scheme that auto-tunes itself
to find a common network initialization, i.e., a meta-model, such that each INR
can be fitted in a few gradient steps to the tasked signal. For example, given
a dataset of images, this approach would provide a base NN, such that when
fine-tuning on a single image, only a few adaptation steps are required to achieve
good reconstruction. Besides images, INRs are commonly employed to functionally
represent diverse data types, and even arbitrary topological spaces [5]. However,
to the best of our knowledge, INRs have never been used to represent decision
models, such as decision trees.

Decision Trees. A Decision Tree (DT) classifier is an interpretable predictive
model representing decisions through nodes and branches [6]. Formally, a DT,
x, can be defined as a set of m nodes, i.e., x = {x;}7,. There are two types of
nodes: inner nodes and leaf (or outer) nodes. Inner nodes contain the index of
the feature a; € N and the threshold ¢; € R, which represent the split condition
used to route input data through the tree, i.e., zi* = (a;,¢;). Instances are routed
through the inner nodes, starting from the root. At each inner node, a split
condition a; < t; is evaluated, directing the instance to one of its child nodes until
it reaches a node with no children, i.e., a leaf. A leaf node contains information
about y; € N, which is the index of the majority class of instances in the training
set that ended up in that specific leaf, i.e., 0" = (y;).

Tree induction algorithms commonly use a top-down greedy search for possible
splits [6]. In contrast, alternative approaches include evolutionary algorithms or
deep learning-based methods such as autoencoders, which can generate decision
trees by discovering latent representations [7]. Regardless, representing the
structure of a DT in a tabular format remains a significant challenge. In [9],
the Jankowski encoding was proposed, which represents a tree structure as a
2 x (29*! — 1) matrix, where each row of the matrix contains node-specific
information, and d is the depth, i.e., the number of edges from the root to the
deepest leaf. The first row stores the split features a; for internal nodes or null for
leaf nodes. The second row holds either the split thresholds ¢; or the classification
labels y;. Tree navigation follows a breadth-first approach, with the i-th node in
column ¢ and its children in columns 2¢ and 2¢ 4 1.

3 Implicit Neural Decision Trees

In this paper, we propose Implicit Neural Decision Trees (INDT), a framework
for representing decision trees using INRs. Consequently, we need to tackle the
problem of representing DTs as functional data. The first step when designing
an INR is to define the coordinate system, and the feature value the INR should
map to. These choices are obvious for data such as images, where it is natural to
identify pixel location using a grid lattice. However, for DTs, there is no canonical
setting. Here, we propose using the nodes in the DT as a target of the INR, i.e.,
we consider the nodes {z;}, of a tree in the same way as the pixels of an image,
with the INR trying to reconstruct the node based on its coordinates.

To design a suitable coordinate system, we draw inspiration from the Jankowski
encoding [9], which indexes nodes starting from the root using a breadth-first
search (BFs). However, this coordinate system is suboptimal for our case, as it
treats a DT like a sequence and lacks explicit information about node depth. To
overcome this limitation, we introduce a binary coordinate system where the BFs
index of a node, iy, is converted to its binary representation: inpr = bin(igps).
Then, each binary digit becomes an entry of the coordinate vector ¢ € {0, 1}4+1,
where d is the tree’s depth. For example, as illustrated in Figure 1 (left), the
root node with igpg = 1 is represented as 001, its left child, igps = 2, becomes
010, and so on. This coordinate system introduces leading zeros in the binary

coordinates features thresholds decision tree

a
a 110|0 0.3
t

f0 001 1.7

inner

leaves
Pyt

INPUT INDT OUTPUT

Fig. 1: Schema of our proposal: tree node coordinates are the input of three
functions within the INDT to reconstruct feature and threshold arrays for inner
nodes, and classes for leaf nodes, enabling decision tree representation.

representation, which expose direct information about the depth of the node.
The INDT can leverage this information to improve its ability to represent DTs.
Furthermore, unlike [9], we encode features and classes as one-hot vectors. An
example of our feature, threshold, and class representation is shown in Figure 1.

Given the different domains of these representations, it would be challenging
to model these outputs with a single parametrization. Therefore, the INDT is
composed of three functions, f§, f§, f§, taking binary coordinates as input and
returning one output each: the predicted feature, f§(c) = a, the threshold,
ft(c) = t, and the class, f§(¢) = g. For inner nodes, we need to minimize both
the feature reconstruction error, ¢%(a, a), measured with cross-entropy loss, and
the threshold reconstruction error, ¢*(t, f), measured with mse. For leaf nodes,
we need to minimize the cross-entropy £¥(y,). The weighted sum of the losses
gives the total loss for the whole tree:

m
L= Z]]-inncr(i) (ﬁf;l + ry[f) +]]-loaf(i) (56?)7 (1)
i=1
Once trained, the INDT can sequentially process tree coordinates and get the
encoded tree output, which in turn is decoded using the reverse Jankowski
encoding. A set of INDTs forms an Implicit Neural Forest. This forest can be
modeled either as many separate INDTS or as a more compact meta-model of
INDTs. Clearly, we can expect greater computational complexity in the latter than
the former, but also more generalization capabilities. Note that the functional
representation of the INDT enables us to look at the trees through the lens of the
parameters 6 of the learned NNs. In the case of separate INDTS, the obtained
representation is the collection of the parameters of each NN: the representation
space is the product of the single-tree INDT parameter spaces. On the other hand,
in the case of a meta-model, the parameter of a single NN represents the entire
forest or, if the forest is a representative sample, a distribution of trees. Trees
in the forest share the same representation space, enabling adaptation in a few
gradient steps, the generation of new trees from the common distribution, and
the summarization and analysis of the forest within the unique meta-model.

bank breast cars glass pima wine

8 RFuee 1.00+0.00 0.98+0.02 0.96+0.02 0.77+o0.05 0.70+0.02 0.61+o.01
5 DTgce 0.974+0.00 0.95+0.01 0.86+0.00 0.67+0.04 0.65+0.010 0.52+0.01
9 loss 0.53+£0.00 0.85+0.00 0.90+0.00 1.21+0.00 0.81+0.01 1.41+o0.01
2 RFaee 0.98+0.01 0.99+0.02 0.86+0.04 0.65+0.07 0.66+0.02 0.52+0.04
@ DTgce 0.9440.02 0.94+0.01 0.85+0.01 0.56+0.07 0.64+0.01 0.46+0.01
'%' loss 1.18+0.08 1.92+0.02 2.114+0.06 2.814+0.06 1.83+0.02 3.27+o0.01
= RF gce 0.97+0.01 0.98+0.01 0.74+0.02 0.67+0.07 0.72+0.05 0.52+0.01
3 DTgce 0.88+0.02 0.95+0.00 0.72+0.00 0.52+0.05 0.68+0.02 0.47+0.00

Table 1: Loss, RF accuracy, and DT accuracy for 10 trees of depth 5. (top)
Average performance of the original model; (bottom) average performance of the
reconstructions. The closest RF accuracy to the original is underlined.

4 Experiments

We assess here the ability of INRs to correctly represent and reconstruct DTs
and forests of DTs. We selected six tabular datasets commonly used when
experimenting with novel DTs approaches [7]. We first generate the trees by
training three scikit-learn Random Forest (RF) classifiers consisting of 10 trees
each with maximum depth d = 5, and assess the performance on the test set
of the RF, and the underlying DT estimators. Then, we build both individual
INDTSs trained separately on each tree, and meta-INDTs trained using a-MAML,
and benchmark them on the test set. The individual INDTs and meta-learning
are implemented using the jax and learn2learn libraries’. We set the network
structure to a SIREN model [4], with one hidden layer containing 32 units. As
optimizers, we use ADAM with learning rate Ir = le—3 for individual SIRENs, and
meta-sGD with Ir = le—5 in a-MAML, with 3 adaptation steps. Further, we set
the loss weights 3, v, 0 to 1. Each model is trained for 10 000 epochs.

The results presented in Table 1 provide insights into the reconstruction per-
formance of DTs and RF when implemented using individual INDTs or meta-INDTs.
The first two rows report the performance of the original models. The benchmark
evaluation focuses on two aspects: (i) reconstruction loss, measuring how well
INDTS or meta-INDTs reconstruct trees, and (%) test accuracy of the reconstructed
DTs and RFs. Accuracy serves as a proxy for assessing reconstruction fidelity, as
reconstructed models should ideally match the performance of the original models.
Overall, the results indicate that small deviations reflect consistent performance
in both accuracy and loss metrics. Training separate INDTs for each DT usually
leads to lower reconstruction losses than meta-INRs trained with a-MAML. This
is expected, as the generalization goal of meta-learning introduces complexity,
making precise reconstruction more challenging. Notably, lower reconstruction
losses do not always correlate with better accuracy, highlighting the need to
distinguish loss minimization from the practical accuracy of the reconstructed
models. The decision thresholds of inner nodes, derived from the gradients of

1Code available at: https://github.com/fismimosa/indtree/

the loss function ¢!, influence node split precision without altering tree structure.
Reconstruction quality depends on calibrating these thresholds, not just on loss
reduction. We hypothesize that finetuning the loss weights could improve the
accuracy of the reconstructed tree and forest, although this is beyond our scope,
and we leave it for future experiments. This sensitivity to multi-output loss is
corroborated by preliminary experiments showing that a single parametrization
of the outputs leads to a more unstable optimization than keeping separate NNs.
In summary, while individual INDTs demonstrate better performance regarding
reconstruction loss, meta-learning with a-MAML shows competitive accuracy.

5 Conclusion

We have introduced Implicit Neural Decision Trees (INDT), a framework for
representing decision trees using Implicit Neural Representations (INRs). Our
findings show that INRs can effectively model DTs, also extending to Random
Forests through meta-learning. Thus, we have empirically demonstrated the
potential of INRs as a functional representation of DTs. A limitation of this study
is the computational complexity of meta-learning with current libraries, which
restricted testing on larger datasets and deeper DTs. Nonetheless, we believe our
proposal provides a promising unified representation for DT classifiers. For future
work, we propose exploring alternative coordinate systems, such as hyperbolic
spaces, to better capture the hierarchical properties of DTs. Additionally, we
aim to leverage these functional representations to induce interpretable DTs in
a generative and scalable manner and to evaluate them against traditional and
neural-based ensembles, enhancing their utility in ML applications.

References

[1] Benjamin Paafien, Claudio Gallicchio, Alessio Micheli, and Alessandro Sperduti. Embeddings
and representation learning for structured data. In ESANN, 2019.

[2] Jan Gertheiss, David Riigamer, Bernard XW Liew, and Sonja Greven. Functional data
analysis: An introduction and recent developments. Biometrical Journal, 66(7), 2024.

[3] Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo Jimenez Rezende, and Dan
Rosenbaum. From data to functa: Your data point is a function and you can treat it like
one. In ICML, volume 162 of PMLR, pages 5694-5725. PMLR, 2022.

[4] Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and
Gordon Wetzstein. Implicit neural representations with periodic activation functions. In
NeurIPS, 2020.

[5] Daniele Grattarola and Pierre Vandergheynst. Generalised implicit neural representations.
In NeurIPS, 2022.

[6] Leo Breiman, J. H. Friedman, Richard A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, 1984.

[7] Riccardo Guidotti, Anna Monreale, Mattia Setzu, and Giulia Volpi. Generative model for
decision trees. In AAAI pages 21116-21124. AAAI Press, 2024.

[8] Harkirat Singh Behl, Atilim Giines Baydin, and Philip H. S. Torr. Alpha maml: Adaptive
model-agnostic meta-learning. In 6th ICML Workshop on AutoML, 2019.

[9] Dariusz Jankowski and Konrad Jackowski. Evolutionary algorithm for decision tree induction.
In CISIM, volume 8838 of Lecture Notes in Computer Science, pages 23-32. Springer, 2014.

