Generate Polyphonic Music with Multivariate
Masked Autoregressive Flow

Massimiliano Sirgiovanni ! and Daniele Castellana’

Universita degli Studi di Firenze - Department of Statistics, Informatics
and Applications, Viale Morgagni, 59, Firenze - Italy

Abstract. This paper explores the use of the Masked Autoregressive
Flow (MAF) model for music generation, specifically addressing its limi-
tation to univariate time series. To extend MAF for polyphonic melodies,
three approaches are proposed and tested on the Lakh Pianoroll Dataset.
The results show promising accuracy and the model’s ability to generate
original, pleasing melodies, demonstrating the potential of this innovative
interdisciplinary approach.

1 Introduction

Music generation theory aims to decode the mathematical principles behind
melody creation, enabling the reproduction of pleasing tunes. to this end, key
challenges such as data representation, adherence to melodic rules, quality eval-
uation, and modifying generated compositions should be faced.

In the literature, melodies are often treated as monophonic, meaning only one
note is played at a time. For example, in [I], the authors employ an adversarial
autoencoder to generate new music samples. However, the melodies are treated
as temporal sequences in which each time step corresponds to a single played
note or a silent state. Similarly, [2] proposes a recurrent VAE with a hierarchi-
cal decoder to improve long-term dependencies, but still within a monophonic
framework.

While there are other approaches which generate polyphonic melodies (e.g.
[3]), the application of Masked Autoregressive Flow (MAF) [4] in this context is
unexplored. MAF is an autoregressive flow-based model that is used to perform
density estimation. In [4], this architecture has been applied only to univariate
time series and images.

The goal of this paper is to extend the MAF architecture to multivariate
time series to generate polyphonic melodies. A polyphonic melody can be in-
terpreted as a temporal sequence of vectors of size D, where D is the number
of possible notes. We propose three MAF architectures to handle multivariate
sequences with different inductive biases: the first treats each note separately
with shared parameters; the second uses separate weights for each note while
assuming independence; and the third accounts for dependencies between notes
across time steps.

2 MAF Models for Music Generation

The MAF [4] is a flow-based model leveraging Masked Autoregressive for Den-
sity Estimation (MADE) [5] as a fundamental component to effectively manage
sequential data and compute exact data densities. Let [x1,...,2z7] be an input
sequence. MAF assumes that it is generated as follows:

Ty = U expay + pp with u, ~ N(0, 1), (1)

where py = fu,(¢1.4-1) and a; = fa,(214—1) are estimated using the previous
elements in the sequence z1.;_1. Here, u; represents a latent random variable
sampled from a simple known distribution, such as a standard normal distribu-
tion. Thanks to this formulation, MAF enables the generation of new sequences
by simply sampling new values of u;. Notably, Eq. is invertible, allowing
transformation between data = and latent variables w.

Going into details, MAF assumes that each observable variables x is gener-
ated from an univariate Gaussians with parameters p; and «y, representing the
mean and log-variance respectively. These parameters are computed via two in-
vertible autoregressive functions f,, and f,,, enabling transformations between
complex data distributions and simpler ones. These two functions are imple-
mented using a MADE network [5], which consist of a stack of masked linear
layers followed by activation functions. At each layer, MADE produces a new
sequence [h1,...,hy], where h; € R represents the hidden representation at
time-step t. Thanks to the masked linear layer, MADE allows density evalua-
tions without the typical sequential loop of autoregressive models, thus making
MAF computationally efficient and well-suited for parallel execution on modern
architectures such as graphics processing units (GPUs).

In the above presentation (and in [I]), the input sequence is assumed to be
univariate (i.e., each element z; is a real number). In the following, we propose
three different MAF architectures to handle multivariate sequence (each element
x, is a vector of size D, i.e. x; € RP; thus, we represent a multivariate time-
series as a matrix of size Tj, x D). To this end, we modify the masked linear
operator in order to handle multiple features at each time-step. This step is
crucial to employ MAF in the context of polyphonic music generation where
each element in the sequence is a vector of size D, where D is the number of
notes that could be played.

Shared Univariate MAF (SU-MAF) treats each melody as D distinct
univariate sequences processed with the same parameters:

T’in
hiji_l - Z WzlLtMithfti + bim (2)
t=1

where W € RTewtxTin and b* € RTewt are the parameters of the I-th layer, and
M is a mask which ensures that the autoregressive property is ensured. The
output of the layer is again a multivariate sequence with 7, elements of size D
(thus, it is represented by a matrix of size Ty, X D).

Different Univariate MAF (DU-MAF) again processes the melody as
D univariate sequence; however, it employs a different set of parameters for each
note:

Tin
hit = Z Wi My + b, (3)
t=1

where W' € RTeutXTinxD and bl € RTout*D are the parameters. Again, the
mask M ensures the autoregressive property and therefore it does not depend
on the note.

Tensor-Multivariate MAF (TM-MAF) aims to capture the relation-
ships between different notes at different time steps. To achieve this, we cannot
process each note separately as a univariate sequence (as we have done in the
previous architectures):

Tin

D
it = Z Z Whiin Mlhl; + by, (4)

t=1 i=1

where W! € RToutxTinxDXE apg pl € RTour*K are the parameters of the I-th
layer. The mask M ensures the autoregressive property and therefore it does
not depend on the note.

The output of the layer is again a multivariate sequence with T,,; elements
of size K (thus, it is represented by a matrix of size T,,; x K). The dimension
K is a hyper-parameter and it allows the generation of vectors with a size that
is different from the input one.

The mask M remains unchanged from the previous case because the notes
do not have any autoregressive dependence, meaning a note at the i-th time
step depends on all the states assumed by all the notes in the preceding i — 1
time steps. Therefore, the mask is applied only to the time steps, adjusting its
dimensions to be able to multiply it with the weights.

3 Experimental Analysis

To assess the differences among the proposed architectures, we conduct an ex-
perimental analysis on the Lakh Pianoroll Dataset Cleanse(ﬂ, containing 21,425
multi-track piano rolls. We focus only on melodies that use % (the most com-
monly used); therefore, each measure consists of four beats, each of which is
valued at i. In the case of this study, tracks were divided into sub-tracks of two
measures each. The granularity chosen was the sixteenth note, where one time
step represents 1—16 of a whole note. As done in [I], a sliding window approach
was employed on the data. The unit considered is a measure, so all combinations
of two consecutive measures were considered. Sequences were removed from the

obtained tracks if they (1) repeat in the dataset, (2) contain only silent states

Thttps://salu133445.github.io/lakh-pianoroll-dataset/

https://salu133445.github.io/lakh-pianoroll-dataset/

Model N. Layers Hidden Sizes N. Parameters per layer

SU-MAF 2 (500, 1000] 7°540°000
DU-MAF 4 50, 100] 21°'801°000
TM-MAF 3 (10, 10), (14, 10)] 20'5747320

Table 1: Best configuration for each variant of MAF. The number of parameters
of SU-MAF is lower due to the parameter sharing among notes.

(32 bars containing only zero values), (3) contain a hold state as the first time
step of the first measure.

In a MIDI file, the playable notes range from 0 to 127. We also add a new
state called "hold state” to represent the situation where a note is played for a
period longer than a time step continuously. This distinguishes this case from
when the same note is played multiple times in succession but not continuously.
For simplicity, only note activation information was considered, disregarding
the velocity attribute in MIDI. Also, only MIDI programs with a value of 0,
which usually corresponds to the ” Acoustic Piano” instrument, were considered.
After all the aforementioned transformations were applied, around 300,000 tracks
were obtained. For each MAF architecture proposed, we select the best hyper-
parameters through a grid search. We validate the number of layers and the
value of hidden sizes in MADE in such a way that all the architectures have a
comparable number of parameters and we select the best model and we select
the best configurations (Table|l)) via model selection.

To evaluate the quality of the generations obtained from the models, it was
not possible to apply traditional generative model evaluation metrics, such as
reconstruction error. In fact, the intrinsic properties of the MAF model always
ensure a perfect reconstruction of the input sequence. Therefore, some metrics
have been developed to compare them with the melodies from the training set.
Since the training set consists of human-composed melodies, this approach allows
an indirect comparison with human compositions. However, many music-based
metrics require a deep understanding of musical theory, making them complex
for those outside the field. To circumvent this issue, we rely on more accessible
metrics, such as: number of held notes (hold state), number of silent notes,
number of played notes, highest pitch note, lowest pitch note, average pitch of
the notes, and simultaneously played notes. Each model generated samples of
1000 melodies to apply the aforementioned metrics.

Results Discussion. By observing Table[2] there is a clear discrepancy between
the training set values and those generated by SU-MAF: due to the parameter
sharing among notes, the model is not able to generate good samples. Instead,
DU-MAF produced results that were much closer to those of the training set.
In particular, the number of silent notes decreased significantly compared to
the SU-MAF case, while the number of played notes increased. Furthermore,
the songs exhibited more polyphony, averaging 16 time steps with simultaneous

notes. Finally, TM-MAF obtains mixed results: while silent time steps were still
common, they were fewer than in the SU-MAF case. Consequently, the number
of played notes and the polyphonic time steps differed substantially from the
training set values. On the other hand, certain features, such as the number of
held notes and the highest and lowest pitches, closely aligned with the training
set. Although TM-MAF is the most expressive architecture, it struggles to
capture all the data characteristics. We believe that this is due to small hidden
size choosing to limit the number of parameters.

Tr set SU-MAF DU-MAF TM-MAF

Held Notes 7.89 0.04 9.19 6.57
Silent Timesteps 11.55 27.59 10.12 20.29
Played Notes 26.16 5.00 26.57 7.51
Highest Pitch 60.97 78.27 71.25 55.89
Lowest Pitch 43.02 47.15 36.65 38.13
Mean Pitch 51.81 63.07 49.85 45.84
Polyphonic 14.25 4.32 17.76 5.99

Table 2: Comparison of Generation Metrics between the training set and 1000 samples
generated by: SU-MAF, DU-MAF, and TM-MAF

Comparison Beetween Training set and MAF Models

W TRAINING SET
W SU-MAF
50

W DU-MAF
W TM-MAF
(0

Fig. 1: Histogram representation comparing the Training Set with the generations
obtained through the three models. The metrics depicted are those associated with
the evaluation of generations and reported in TableEl

80

1]
=
%)
iz
ui|
0
()=
Z
m

JLONQT3H
S3LON d3AV1d
HOLId LSIHOIH
HOLld 1S3IMOT
HOLId Nvan
R

4 Conclusions

The main goal of this work is to explore the application of the MAF architecture
in the context of music generation. In this context, the time series are multivari-
ate and thus cannot be handled directly by MAF. We overcome this limitation
by proposing three approaches to extend the MAF architecture to multivariate
time series. The results obtained on the generation of MIDI songs show that

processing all the notes with the same parameter is a sub-optimal choice. Never-
theless, the most complex approach that considers also the interactions between
the nodes struggles to learn the intrinsic characteristics of the data due to the
limited hidden size.

Our results encourage us to deepen the application of MAF architectures in
the context of multivariate time series. Music is just one possible application
of this model. A multivariate model of this kind could be valuable for various
types of complex data, particularly sequential data, as explored in this study.
More broadly, it could be applied to high-dimensional datasets where captur-
ing intrinsic features and their interactions is essential. The approach used can
certainly be improved. In particular, it would be interesting to employ tensor
decomposition to overcome the limitation of TM-MAF'; thanks to tensors decom-
positions, we would be able to model interaction among notes without limiting
the hidden size to reduce the number of parameters. This approach has been
already applied with success on various domains, from structured data [6] [7) 8]
to images [9]. On the other hand, to further develop the music use case, the
work could be extended by incorporating additional musical properties, such as
velocity, and adopting more advanced music-specific metrics, that would enable
a comparison with commonly used approaches in the literature.

References

[1] Andrea Valenti, Antonio Carta, and Davide Bacciu. Learning style-aware symbolic music
representations by adversarial autoencoders, 2020.

[2] Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck. A hier-
archical latent vector model for learning long-term structure in music. In International
conference on machine learning, pages 4364-4373. PMLR, 2018.

[3] Gino Brunner, Andres Konrad, Yuyi Wang, and Roger Wattenhofer. Midi-vae: Modeling
dynamics and instrumentation of music with applications to style transfer. In Proceedings
of the 19th International Society for Music Information Retrieval Conference (ISMIR
2018), pages 747-754. dblp, 2018.

[4] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for
density estimation. Advances in neural information processing systems, 30, 2017.

[5] Mathieu Germain, Karol Gregor, lain Murray, and Hugo Larochelle. Made: Masked au-
toencoder for distribution estimation. In International conference on machine learning,
pages 881-889. PMLR, 2015.

[6] Daniele Castellana and Davide Bacciu. A tensor framework for learning in structured
domains. Neurocomputing, 2021.

[7] Daniele Castellana and Davide Bacciu. Learning from non-binary constituency trees via
tensor decomposition. In Proceedings of the 28th International Conference on Computa-
tional Linguistics, pages 3899-3910. International Committee on Computational Linguis-
tics, dec 2020.

[8] Chenging Hua, Guillaume Rabusseau, and Jian Tang. High-order pooling for graph neural
networks with tensor decomposition. In Proceedings of the 36th International Conference
on Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2024. Curran
Associates Inc.

[9] Weihong “Grace” Guo Yinan Wang and Xiaowei Yue. Tensor decomposition to compress
convolutional layers in deep learning. IISE Transactions, 54(5):481-495, 2022.

	Introduction
	MAF Models for Music Generation
	Experimental Analysis
	Conclusions

