Enhancing neural link predictors for temporal
knowledge graphs with temporal regularisers
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Abstract. The problem of link prediction in temporal knowledge graphs
(TKGs) consists of finding missing links in the knowledge base under tem-
poral constraints. Recently, [4] and [8] proposed a solution to the problem
inspired by the canonical decomposition of 4-order tensors, where they
regularise the representations of time steps by learning similar transfor-
mation for adjacent timestamps. However, the impact of the choice of
temporal regularisation terms is still poorly understood. In this work, we
systematically analyse several choices of temporal regularisers using linear
functions and recurrent architectures. In our experiments, we show that
by carefully selecting the temporal regulariser and regularisation weight, a
simple method like TNTComplEx [4] can produce comparable results with
state-of-the-art methods and enhance its original performance. Specifically,
we observe that linear regularisers for temporal smoothing based on specific
nuclear norms can significantly improve the predictive accuracy of the base
temporal link prediction methods.

1 Introduction

Temporal Knowledge Graphs (TKGs) [10] are graph-structured knowledge bases
where knowledge about the world is encoded in the form of relationships of
various kinds between entities, provided with their timestamps, indicating when
relations happened. When reasoning with TKGs, one of the most crucial tasks is
finding or completing missing links in the temporal knowledge graph at a precise
time point, often referred to as the TKG completion task. Recently, [4] and
[8] proposed two state-of-the-art approaches by extending factorisation-based
neural link prediction models with dense representations for each timestamp and
regularising such representations by enforcing them to change slowly over time.
However, the impact of the choice of temporal regularisation terms is still not
well understood.

Hence, in this work, we systematically analyse a comprehensive array of
temporal regularisers for neural link predictors based on tensor factorisation.
Starting from the temporal smoothing regulariser proposed by [4], we also consider
a broad class of norms in the L, and N,, families, which allow us to control the
strength of the smoothing. We further extend the set of temporal regularisers by
considering the regulariser proposed by [§], defining it as an explicit modeling
of the temporal dynamic between adjacent timestamps. Lastly, we also adopt
a recurrent architecture as an implicit temporal regulariser that can generate



timestamp embeddings sequentially and learn the temporal dynamic during the
training phase.

By conducting an experimental evaluation over three well-known benchmark
datasets (ICEWS14, ICEWS05-15, and YAGO15K) we show that using our
proposed temporal regularisers, neural link predictors based on tensor factorisa-
tion models can significantly improve their predictive accuracy in temporal link
prediction tasks. By carefully selecting a temporal regulariser and regularisation
weight, our version of TNTComplEx [4] produces comparable results with other
competitors, such as methods based on temporal message passing [7] or convolu-
tional neural networks [3]. Overall, linear regularizers for temporal smoothing
that introduce smaller loss penalties for closer timestamp representations achieve
the best performance. In contrast, recurrent architecture struggles to generate
a long sequence of timestamps. In general, our work shows that by carefully
tuning simple tensor factorisation models, they can reach comparable perfor-
mance with other competitors, enabling several applications useful in network
science and graph mining, such as adding logical constraints, producing more
interpretable results, or scaling to very large graphs [6], without substantial
sacrifices in performance.

Background. A Temporal Knowledge Graph (TKG) is referred to as a set of
quadruples K C {(s,p,0,7) | s,0 € &,p € R,7 € T}. Each quadruple represents
a true temporal fact. £ is the set of all entities and R is the set of all relations
in the ontology. The fourth element in each quadruple represents time, often
discretised. T represents the set of all possible timestamps. Temporal Knowledge
Graph Completion refers to the problem of completing a TKG by inferring facts
from a given subset of its facts. The subject of temporal link prediction has
been studied using a wide range of approaches. A recent survey [I0] gives a
general overview of temporal link prediction models for TKGs. In this work, we
focus on methods that learn the temporal behaviour by using a representation
of time. For instance, [4] performs tensor decomposition based on the time
representation, while [8] performs 4th-order tensor factorization using a linear
temporal regularizer and multivector embeddings. Hence, we systematically
analyse a wide array of temporal regularisers to understand their impact on both
performance and learning temporal behaviour.

2 Temporal KG Representation Learning

This section presents a framework for temporal knowledge graph representation
learning [4]. Given a TKG, we want to learn representations for entities, relations,
and timestamps (e.g., s, p, 0,t, € RY) and a scoring function ¢g(s,p,0,7) € R,
such that true quadruples receive high scores. Thus, given ¢y, the embeddings
can be learned by optimising an appropriate cost function. As in [5], we minimise,
for each of the train tuples (s,p, 0, 7), the instantaneous multi-class loss:
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This loss is only suited to queries of the type (subject, predicate, 7, time),i.e.
the queries considered in related work. For a training set S (augmented with
reciprocal relations [0]), and parametric tensor estimate ¢y, we minimize the
following objective, with an embedding regulariser 2
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In our experiments, embedding regularisation is performed using a nuclear tensor
3-norm [5].

TNTComplEx. TNTComplEx [4] extends the ComplEx [5] decomposition to
the TKG completion task by adding a factor 7" resulting in the scoring function
bo:

o (s, p.0,m) = Re ({8,p,0,t1)) (3)
where s and o are the embeddings of entities s,0 € £, p is the embedding for the
relation p € R, and t, is the embedding for the timestamp 7 € 7. Intuitively,
timestamp embedding modulates the multi-linear dot product.

In TKG, where only a few relation types are temporal, they introduce an
embedding representation — p* — whether the relation p is temporal and an

embedding p otherwise. Thus, the scoring function qbgcomplEX is extended into

the TNTComplEx scoring function ¢« P
gNTComplEX(Svp, 0,7) = Re ({s,p* ® t; + p,0)) (4)

2.1 Temporal regularisers

Temporal regularisers encourage tensor factorisation models to learn transforma-
tion for timestamp embeddings that capture specific temporal properties of real
datasets. For instance, one would like the model to take advantage of the fact
that most entities behave smoothly over time, i.e. learn similar transformations
for closer timestamps. Alternatively, one would like to push away the representa-
tion of distant timestamps or allow the timestamp embeddings to be generated
sequentially. Formally, a temporal regulariser is a penalty term A(T') in the loss
function, leading to the minimisation of the following objective:
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Temporal smoothing. Most of the work in the literature [4], 9] adds a temporal
smoothness objective to the loss function to encourage neighbouring timestamps
to have close representations. The temporal smoothing regulariser is defined as:

L T
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and it has been shown to increase performance on several benchmark datasets
[4, 0]. However, it has been tested using only the N3 norm. Hence, we decide
to further investigate its impact by considering a wide class of norms in the
L, and N, families. In our intuition, the choice of the norm function controls
the strength of the smoothing, since norms differently penalize changes in the
behavior of the entities on neighbouring timestamps. For instance, using an L,
norm always penalises no equal timestamp representations, and the value of p
determines the magnitude of the penalty; while an N, norm allows not penalising
close representation for neighbouring timestamps (with p = 5 it starts to grow
only for [t;41 —t;| > 0.4). In this case, the value of p controls the magnitude of
the penalty and the range of distances to not penalise.

Linear3 Regulariser. In [8], they propose a new temporal regulariser, namely
Linear3, that can be defined as follows:
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where Wy, € RY denotes the embedding of a bias component between the
neighbouring temporal embeddings, d the embedding size. The bias embedding
is randomly initialised and then learned from the training process.

This linear regulariser promotes that the difference between embeddings of
two adjacent timestamps is smaller than the difference between embeddings of
two distant timestamps. In the context of this study, it is interesting to notice
that Linear3 can be interpreted as the average score of triples (7 + 1, follows, T),
where the embedding of the relation follows is given by the bias component.
From this point of view, Linear3 encourages similar embeddings for neighbouring
timestamps by explicitly modeling their temporal dynamic through the predicate
follows.

Modelling Temporal Dynamics via Recurrent Architectures. Timestamp embed-
dings can be generated sequentially using a recurrent neural architecture that,
starting from a random initialised hidden state, can learn implicitly the temporal
dynamic through the learning process. Given a specific Recurrent Neural Network
(RNN) architecture, the equation that describes its forward procedure acts as a
temporal regulariser that maps the embedding of timestamp 7 as:

t, = MLP(RNN(h,_1,0));7 € {1, ..., |T|} 8)

where hg € R™ is the learnable initial hidden state, 0 is the zero vector, RNN is
the function that describes the recurrent architecture, MLP is a function that
describes one multi-layer perceptron layer that has (m,d) channels, d is the
embedding dimension and m < d.

3 Results and Discussion
We evaluate the impact of temporal regularisers on TNTComplEx for link predic-
tion on temporal knowledge graph datasets, specifically ICEWS14, ICEWS05-15,



ICEWS14 ICEWS05-15 YAGO15K

Model MRR Hit@l Hits@3 Hit@10 MRR Hit@l Hit@3 Hit@1l0 MRR Hit@l Hit@3 Hit@10
DistMult (2014) 439 323 - 67.2 45.6  33.7 - 69.1 27.5 215 - 43.8
ComplEx (2016) 47.0  35.0 54.0 71.0 49.0 37.0 550 73.0 36.0 29.0 36.0 54.0
TA-TransE (2018) 27.5 9.5 - 62.5 29.9 9.6 - 66.8 321 231 - 51.2
HyTE (2018) 29.7 108 41.6 65.5 44.5 68.1 - - - -
TA-DistMult (2018) 417 - 36.3 68.6 - 2.8 29.1 216 - 47.6
TIMEPLEX (2020) 60.40  51.50 - 7711 - 81.81 - - - -
TeRo (2020) 56.2  46.8 62.1 73.2 66.8 79.5 - - -

BoxTE (2022) 61.5 53.2  66.7 76.7 71.9 82.0 - - -

TeLM (2021)? 61.41 53.39  66.0 76.12  66.70 71.28  80.85 - - - -
ChronoR (2021)? 56.97 46.50 63.66  76.06  60.64 67.97 81.13 3289 2588 33.51 50.71
RoAN-DES (2023) 58.80 47.60 66.10 78.80 59.90 67.90  82.30 - - - -
CE-CGCN (2024) 52.90 42.30  59.60  72.30  49.20 55.30  72.60 - - - -
TNTComplEx (2020)% 60.72 51.91 6592 7717 66.64 71.82  81.67 3594 2849 36.84 53.75
TNTComplEx + Temp.Reg. (ours) 61.80 53.60 66.55 76.97 67.70 59.90 72.35 82.30 37.05 29.00 39.62 54.02

Table 1: Evaluation on the YAGO15K, ICEWS14, and ICEWS05-15 datasets.
Results reported for previous related works are the best numbers reported in
their respective paper.
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Fig. 1: Comparison of various temporal regularisers with different regularisation
weights on TNTComplEx trained on ICEWS14 (a) and ICEWS05-15 (b).

and YAGO15K, following the experimental set-up described in [2]. We use
baselines from both static and temporal KG embedding models. The source code
to reproduce the full experimental results is made public on GitHukﬂ

Table [I| demonstrates link prediction performance comparison on all datasets.
Our TNTComplEx model achieves better performance than its original counter-
part for all datasets and metrics. Most importantly, TNTComplEx, with one of
our proposed temporal regularisers, outperforms all the competitors in terms of
link prediction MRR and Hits@1 metric on the three datasets. It is important to
note that two very recent works achieve better performance than our method.
The first [9] is based on tensor factorization as TNTComplEx and utilizes the
same temporal regulariser: hence, the insights provided by our study can allow
to achieve even better performance. The second [3], instead, leverages several
deep learning modules such as a GRU, and a CNN, which require more learnable
parameters than a simple tensor dot product.

In Fig. [I} we plot a detailed comparison of some of our proposed regularisers for
TNTComplEx, on ICEWS14 and ICEWS05-15 datasets. We observe that linear
regularisers based on Linear3 or nuclear norms typically outperform TNTComplEx
(2020), while RNNs struggle to generate very long sequences of embeddings. For

Thttps://github.com/manuel-dileo/tkbc-reg
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instance, Ny increases MRR by 1.08 points on ICEWS14, and carefully selecting
regularisation weight can increase MRR up to 3.2 points.

Future Works. We plan to extend our analysis to inductive tasks and show
how temporal regularisers can be generalised to work with unseen timestamps,
entities, and relation types — for example, by leveraging recent work connect-
ing factorisation-based models and GNNs [I] — and apply these solutions to
challenging contexts such biological-inspired knowledge graphs and temporal
heterogeneous networks gathered from Web3 online social platforms.
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