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3- DIISM, Università di Siena, Siena (Italy)

Abstract.

Multiple theories exist for the role of feedback connections in the brain and
in the artificial neural networks, but remain untested using modern tools.
In this work, we undertake this task by exploring the utility of explain-
ability methods like GradCAMs[1] in investigating bio-inspired recurrent
networks–provided with the predify [2] package–that perform hierarchical
updates inspired by the predictive coding theory in neuroscience. We re-
port an extensive search with different levels of feedforward and feedback
information. Our preliminary results show that the dynamics are able to
recover the GradCAMs on noisy images, providing promising avenues for
future work aiming to understand the role of recurrence.

1 Introduction

Given that biological brains contain a large number of feedback connections,
researchers in Artificial Intelligence (AI), with the aim of incorporating their de-
sirable properties, have proposed various recurrent neural networks. While each
approach relies on adding certain architectural features into the RNNs, a large
number of proposals differ in the nature of the recurrent dynamics incorporated
into the networks. What properties these dynamics render to modern neural net-
works, along with a thorough comparison between the influences of top-down and
bottom-up information, remains to-date relatively under-explored. While prior
studies have investigated smaller recurrent neural networks and their dynam-
ical properties[3, 4], very few have focussed on large-scale recurrent networks
performing well on complex tasks. Our work resembles that of [5] where the
authors investigated three bio-inspired feedback connections–task-trained, per-
forming surround suppression, and performing predictive coding updates–and
investigated their effects on the representational spaces, albeit from the per-
spective of robustness.In this work, we start by using a popular method used
to ascertain class-based attribution–GradCAM–to explore recurrent networks,
specifically models available with the predify package that perform recurrent dy-
namics based on predictive coding. Our choice of using these models is informed
due to a few specific reasons. First, predictive coding has been a prominent
theory in neuroscience since the early 2000s, along with a recent upsurge in
neural network-based implementations. Thus, this will allow any insights we
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Fig. 1: GradCAM visualizations of noisy inputs (gaussian noise σ = 0.6) at different timesteps

along with the ground truth masks. Over time, the GradCAMs become progressively similar

to the ground truth masks. The hyperparameters for the network used are feedforward β = 0.4

and feedback λ = 0.5.

obtain to be of relevance to neuroscience. Second, [2] provides relevant archi-
tectures along with a flexible framework–allowing us to weigh the contributions
of top-down and bottom-up information, while also providing the possibility of
converting the network into a complete feedforward network. These connections
can also be trained either using purely unsupervised (reconstruction), super-
vised (crossentropy), or a combination of both losses.In this paper we report our
explorations and preliminary results of using GradCAM on predictive coding
networks, and found that the recurrent dynamics can recover the GradCAMs
obtained on noisy images over iterations (or timesteps). We also explore this
behavior by altering the contributions from top-down or bottom-up information
in the networks. Overall, we believe that our results provide a promising use-
case of explainability methods for investigating the role of recurrence in neural
networks.

2 Methods

2.1 Predify

In this work, we investigate convolutional neural networks incorporated with
recurrent predictive coding dynamics using the Predify package[2]. We refer the
interested reader to [2] for all the details. Briefly, the resulting recurrent network
has N pcoders. Each pcoder consists of an encoding layer en (a layer from the
feedforward layer) and a decoding layer dn that predicts the input received.
After initial instantiation, the activations across the pcoders are changed using
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Fig. 2: IoU across timesteps calculated for the two sets of hyperparameters (denoted hps0
and hps1) described in Table 2b. Using a bootstrap procedure on 2000 images we evaluated
the average IoU for each timestep with its standard deviation (error bars).

the equations [2]:
dn(t) = W b

n+1,nen+1(t) (1)

en(t+1) = βnW
f
n−1,nen−1(t+1)+λndn(t)+(1−βn−λn)en(t)−αn∇ǫn−1(t) (2)

where W f
n−1,n are the feedforward weights connecting layer n−1 to layer n, and

W b
n+1,n are the feedback weights. In the equations the coefficients βn, λn, and αn

balance the contributions from the feedforward, feedback and error-correction
terms respectively. In this work, we start with the pretrained PVGG network
provided by the authors and investigate the effects of changing the feedforward
and feedback information on GradCAM.

2.2 Evaluation

Dataset: In this work, we used the large-scale ImageNet-S dataset comprised
of 1.2 million training images and 50,000 high-quality semantic masks [6].
GradCAM: Grad-CAM (Gradient-weighted Class Activation Mapping) is a
technique used for visualizing and interpreting CNN predictions by highlighting
key regions in an image that influence the network’s decision. It estimates the
contribution of a neuron by using the gradient of the output class score relative
to the activations. These gradients are combined with feature maps to create a
heatmap, demonstrating the regions of the image the network is most sensitive
to for making its prediction.[1].

3 Experiments

We start by investigating the pretrained predified-VGG16, or PVGG16, network
made publicly available by the [2]. For each image, over timesteps we calculate
the GradCAM maps on the features obtained after last convolutional layer using
the ground-truth category. Visual inspection shows that, for certain configura-
tions (i.e. after injecting some gaussian noise), the activation maps improved
over timesteps (see Fig.1).



To quantify this behaviour, we measure the commonly used IoU (Intersec-
tion over Union) metric between the GradCAMs and ground-truth segmentation
masks provided in the Imagenet-S dataset. This quantification also allowed us
to automate the exploration in the hyperparameter space (co-efficients β,λ, and
α in Eq.2); allowing us to evaluate the behaviour of the network by changing the
impacts of feedforward and feedback information. Fig.2 shows mean IoU values
obtained for two sets of hyperparameter configurations on 2000 samples. The
purely feedforward VGG16 network (i.e., the recurrent network at t = 0) shows
a mean IoU value of ≈0.3, with additional recurrent dynamics improving this
over a few timesteps. Interestingly, this decreases over further timesteps. We
speculate that this could be because either the hyperparameters are not opti-
mally tuned, or that the dynamics haven’t converged. The latter is also informed
by the trends observed by [2] where the activations themselves converged after
certain timesteps.
Investigating the impact at different layers: to investigate which layer
contributed the most to this correction, we systematically added Pcoders to the
network one-by-one. This can be easily done by setting βi = 1 and λi = αi = 0
for all other pcoders. We then measured the mean IoU for each configuration
(see Fig.3). As the final IoUs obtained are bound by the feedforward back-
bone on which the dynamics are added, we report the values normalized by
the values obtained for the corresponding feedforward counterpart. This nor-
malization facilitates comparisons across different layers and hyperparameter
configurations. We observe that a range of values in the β-λ space improve the
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Fig. 3: Using predictive coding dynamics only on a single pcoder: Each row in the figure
represents the mean IoU values obtained over timesteps by using a single Pcoder. All the
values are normalized w.r.t. the values at timestep t=0. The x- and y-axes show the values
of feedback and feedbforward co-efficients (λ and β respectively) used. The dark region in the
top right of a plot is where the sum of the parameters is greater than 1, and thus skipped.



IoU over timesteps, an effect that is more pronounced for earlier layers in the
networks.
Predictive coding dynamics help in recovering the GradCAMs of noisy
images: Given that these dynamics have been shown to improve the perfor-
mance of the network on noisy images, and to further validate the approach, we
investigated whether we can see this effect on the GradCAMs. To simulate this,
we added gaussian noises of varying degrees (σ ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6}) to the input images and then calculated the mean IoU as above. For
this analysis, as before, we normalized the IoU values (using the values obtained
on corresponding feedforward backbones) to compare them across noise levels
and restricted our evaluations to only the last layer in the network. We fixed the
hyperparameters to be the same across all pcoders. We observed that for lower
noise values, the dynamics relied on lower values of feedforward and feedback
(and thus on more memory), but didn’t help substantially (see Fig.4). On the
contrary, for higher noises, the effect seems to be flipped, with higher feedback
and feedforward values aiding in recovering the IoU values. This is consistent
with previous reports that demonstrate that higher feedback information helps
in sustaining network performance[7]
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Fig. 4: Grid search with noise-injected images. The plots represent the IoU scores across
timesteps (rows) after injection of gaussian noise of various levels (columns)

4 Discussion and Future Work

In this work, we explored the possibility of using explainability methods like
GradCAMs to investigate recurrent networks performing predictive coding up-
dates. More specifically, changing the hyperparameters, we investigated the
impact of different levels of feedforward and feedback signal on the resulting



class activation maps. Consistently with previous reports [7], we found that, un-
der noisy conditions, predictive coding updates were indeed helpful, and in our
case able to recover the segmentation maps, demonstrating improved reliance
of the network on class-specific information in the image. Given the deconvo-
lutional nature of the feedback in such networks, and earlier efforts of using
deconvolutions [8] for visualizing neural networks, one would intuit that predi-
fied networks can be directly studied using their reconstructions. But, as also
argued by [1], such broad pixel-based methods do not allow one to look at “class-
discriminative” information. Thus, using reconstructions, or even broad layer
based correlations [2], limit the scope of the analysis warranting methods like
GradCAMs. Indeed, the strength of our evaluations is contingent upon the util-
ity of GradCAM. There has been a growing awareness about the limitations of
such attribution-based methods, with novel propositions being consistently pro-
posed. We intend to adapt and modify our toolset based on new findings and
techniques. Nevertheless, our preliminary results are promising, and provide in-
teresting avenues for future research. An immediate pursuit could be to contrast
predictive feedback connections to those performing surround suppression.
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