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Abstract. Encoding data on a quantum computer poses a major chal-
lenge on data intensive quantum applications like machine learning. In
particular, data with complex internal structure like emission spectra need
to be adapted to reduce the encoding effort of quantum circuits. We em-
pirically investigate the influence of compression on the encoding of hy-
perspectral data into quantum states, to make its encoding more efficient.
To this end, we assess the effect of approximating states by low-bond di-
mension matrix product states fed into a variational quantum classifier on
the public Pavia University benchmark dataset.

1 Introduction

Machine learning (ML) has grown an energy intensive business, both for train-
ing and inference. The rise of quantum computers (QCs) with computational
possibilities beyond classical hardware may yield improvements also for ML
purposes. However, quantum physics prohibits copying and re-using quantum
states. Therefore, data needs to be loaded in each iteration of the quantum
model, requiring efficient data encoding methods for making QCs useful in ML.

For images, several promising encoding ansétze have been developed. In
amplitude encoding (AE), the classical values of the pixels are mapped to the
coefficients of a quantum basis, which is the most space efficient method at the
cost of the circuit depth required for creating the state. The Flexible Represen-
tation of Quantum Images (FRQI) [I] separates the description in value qubits
and address qubits. It can be generalized to RGB images (Multi-Channel rep-
resentation for Quantum Images, MCQI) with polynomial gate complexity [2].

In this work, we expand the existing description to hyperspectral (HS) im-
ages with a high number of bands and compress the state vector using tensor
network (TN) techniques before encoding on a QC, similar to refs. [3} [, B]. This
approximation greatly reduces the circuit depth needed for mapping the infor-
mation subsequently to the QC. We focus on assessing whether this compression
of HS images affects classification results. This is particularly important for
this type of image due to the high amount of information per pixel, containing
redundancies from a classification standpoint.



2 Tensor networks

TNs are mathematical objects for storing and manipulating complex tensorial
structures in a memory efficient form, originally developed for numerical simu-
lations of large quantum systems [6]. TNs also proved useful for ML and data
compression, especially in combination with QCs, as their inherent structure
makes mapping between classical and quantum devices straightforward [7].

Graphically, TNs consist of low-dimensional nodes, representing the degrees
of freedom, and edges (bonds), representing tensor contractions. When applied,
the contractions yield a single tensor, which contains the same information, but
typically has redundancies that raise storage and handling effort. Inversely, a
TN can be derived from any tensor by decomposition methods like singular value
decomposition (SVD). SVD cuts part of the tensor into a new tensor node that is
connected to the remainder tensor via an internal bond of a size proportional to
the information shared by both subsystems. This size is called bond dimension Y.

The most common TN layout is a matrix product state (MPS) of the form
A1 Bi?2Cbs..., which we also use here. A major advantage of an MPS is its
relatively simple mapping to QCs: first, one brings the MPS to an isometric
canonical form by iteratively applying contractions and SVD on the tensor nodes.
Second, the isometries are promoted to unitary tensors by padding them with
a basis for their kernel. Each unitary corresponds to a quantum gate where the
padded dimensions correspond to ingoing ancilla qubits or outflowing discarded
qubits [7]. The MPS is mapped to a staircase shaped array of gates of sizes
depending on y (see Fig. . Lossy compression is realized by truncating during
SVD and therefore limiting the maximal y allowed. This also limits the number
of in- and outgoing qubits per logical gate and thus yields shorter circuits when
compiled to hardware-native gates.

3 Study setup
3.1 Dataset

We use the Pavia University (PU) dataset acquired by the airborne imaging
spectrometer ROSIS over an urban area surrounding the University of Pavia
(Ttaly). It has 103 spectral bands of size 610x 340 pixels, a spectral coverage from
430nm to 860 nm, and a spatial resolution of 1.3m. Fig. [3] shows the ground
truth, involving nine labeled classes. Ref. [§] provides a standardized dataset
version (henceforth PU-DASE) with only a subset of 3921 pixel labels retained
for users to train their models. A second subset of 10 759 pixel labels is held back
for evaluating user uploaded classification maps in terms of accuracy metrics.
Our metrics of interest for this problem are the overall accuracy (OA), which
is the total ratio of correctly classified samples to all samples, and the average
accuracy (AA), which is the mean of the accuracy ratios for each label class.

3.2 Encoding schemes

MCQI Let If; € [0,1] be the intensity of color channel ¢ € {0,1,...,C — 1}
of the pixel at position (i,j) and set 0;; = arccosIj;. We pad the channel
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Fig. 1: Compression error and rate for 128 x 128 patches (false-color image).

vectors to C' = 21°82()1 channels and fix 6¢; = 0 for all ¢ > C. An ordering of
the npix pixels (e.g. snake-like) is given by a sequence of integers n; ; < (i, )
(0 < nyj < npix). The image maps to 1+ [logy(C)] + [logy(npix)| qubits via:
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Here {|c)} denotes the computational basis on the color qubit space and {|n; ;)}
for the address qubits. A is a normalization constant. The computational com-
plexity of preparing an MCQI state |¢) is the same as for FRQ], i.e., O(n2,) [2].

pix
AE A spectral vector (I%)Czoy___ &1 is divided by its Euclidean norm directly

yielding the real coefficients of a superposition of C computational basis states.
A disadvantage is the loss of the overall brightness of a pixel. By replacing
|pij)col with an AE spectrum in eq. , one can use an addressing scheme to
encode image patches instead of single pixel

Compression The resulting state vector is a tensor of 2™aubits complex entries.
Using sequential SVD as described in section [2| this tensor is converted to an
MPS of limited X < Xenc. Fig. [I] visualizes the effect of encoding an image
patch with MCQI and compressing it with varying limit xenc. By denoting the
tensor holding all coefficients of the MCQI-encoded state as Iorig, We quantify

the compression error € by the normalized Frobenius norm between I, and

Torig—1I
the MPS-compressed and re-contracted tensor Icompr, € = M, where

N is the number of tensor elements. With the compression rate r we denote the
ratio of tensor elements between the MPS-compressed and the MCQI tensor.

3.3 Classification

We consider the impact of MPS compression on multi-class classification using in-
dividual pixel data as input. Fig.[2]schematically shows our quantum circuit with
data encoding (blue) and a variational quantum classifier (VQC) (red/orange):
First, a state vector of AE or MCQI type is prepared for each input as a sin-
gle MPS layer of limited bond dimensions ¥ < Xenc = 22. This requires seven
qubits for amplitude and eight qubits for MCQI encoding. The encoding part is
followed by n = 3 MPS layers of parametrized two-qubit SU(4)-gates (15 param-
eters per gate). Pauli-z measurements on the last m qubits provide a probability
distribution for 2™ bit strings, interpreted as up to 2" possible class labels. The

1The (i, j)-sum must then skip potential null spectra that occur for zero-padded images.
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Fig. 2: An example of a quantum circuit for multi-class classification (with
Xene = 22, seven qubits for amplitude encoding, and three MPS layers).
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Fig. 3: PU ground truth. Table 1: Training hyperparameters.

PU dataset requires m = 4. Motivated by [5], a final layer of single-qubit gates
(orange) allows for local basis transformations before the measurement, leading
to 282 (327) trainable weights in total for AE (MCQI) encoding.

All noise-free state vector simulations use PennyLane version 0.36.0 [9], gradi-
ent training uses TensorFlow (TF) version 2.15.0 [10] on 80 % of the PU-DASE
set, while the remaining 20 % comprise the validation dataset. The hyperpa-
rameters, loss function and optimizer are given in Tab. The TF callback
ReduceLROnPlateatEl was found to improve the overall accuracies and thus cho-
sen for the main experiment. After training, we use the model weights from
the epoch with the best overall accuracy on the validation subset to generate
the prediction map on the PU-DASE test subset. As the main experiment is to
probe the influence of the MPS compression on the classifiability of the input
quantum state, we train both with MCQI and AE encoding and different bond
dimension limits Xene € {2,4, 8,00} using 10 different random initializations.
Training times are O(100) 8-core-hours per parameter configuration and seed.

4 Results

Fig. [4 shows the training progress for the different bond dimension limits for
AE @ and MCQI . For both encoding types, no significant effect with
respect to Xenc can be discerned. Regarding the encoding, we note that the

2Monitoring validation loss, operating w. reduction factor 0.5, patience 100 and A,j,=10"%
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Fig. 4: OA on the training set (mean and standard error over 10 random seeds).

training runs using AE converge much faster after roughly 2000 episodes, whereas
MCQI runs appear to converge just towards the end of training.

Tab. [2| shows the overall and average accuracy for each configuration. We
have aggregated the ten prediction maps as an ensemble using a majority vote
before evaluating on the PU-DASE test subset. Again, we cannot observe a
clear deterioration trend of the accuracy towards smaller bond dimension limits
(higher compression). With respect to the encoding, however, classifiers using
AFE achieve between roughly 5 to 8 percent points higher OA and 8 to 13 percent
points higher AA than their MCQI counterparts. Lower OAs for MCQI on the
PU-DASE test subset compared to the final OAs on the training subset (Fig. [4b))
indicate weaker generalization capability than AE.

The confusion matrix for the ensemble prediction with the highest OA using
AE and xene = o0 is presented in Fig. [5] Of the nine classes, two are predicted
with perfect accuracy, three more have an accuracy greater than 80%, and
two reach at least 50 %. Meadows (3 %) and Gravel (0%), however, are barely
learned. Meadows samples are largely classified as Trees and for Gravel not
a single sample is predicted into said class. The reason for that is the high
similarity to the spectra of other classes that is not captured by the setup.
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5 Conclusion

In this work, we have probed the compressibility of hyperspectral image data
using quantum tensor networks, in particular for quantum machine learning.
Our numerical experiments on the PU benchmark data set have shown for both
the amplitude and the MCQI representation that even strong MPS compression,
i.e., choosing smallest bond dimension limits, does not significantly deteriorate
the single-pixel accuracies of a variational quantum classifier. Former encoding
typically leads to better overall accuracies. Our main interpretation is, that the
raw spectra contain redundant information that can be efficiently compressed
with TN methods from the viewpoint of our specific classifier. A classifier with
higher expressivity will probably require larger maximal bond dimensions.

Natural further research tasks are to verify the findings on other benchmark
sets, with alternative VQC ansétze and to include proximity information in in-
puts. Also, other TN layouts or variational encodings are worth consideration.
However, reaching for VQC accuracies comparable to literature values for purely
classical methods [I1] remains a big challenge, not least due to prohibitive (sim-
ulation) resource demands when scaling up the model complexity (expressivity).
The same holds for the inclusion of circuit noise.
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