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Abstract. Using the statistical physics framework, we study the on-
line learning dynamics in a particular case of shallow feed-forward neural
networks with ReLU activation. By expanding the activation function in
terms of Hermite polynomials we derive analytical results for the evolu-
tion of order parameters for any learning rate. Moreover, we compare our
results with online gradient descent simulations and show how our method
describes the typical learning curves. We also present results on how the
learning rate affects the overall behavior of the network and its equilibria,
showing different learning regimes and critical values of the learning rate.

1 Introduction

Neural networks are a central piece in the ongoing artificial intelligence rev-
olution. Given the broad range of applications of these models, understanding
their underlying mechanisms is instrumental not only to improve their perfor-
mance but also to use them responsibly and to be aware of their limitations.

Statistical mechanics techniques borrowed from physics have proven useful
in the study of neural networks [1, 2, 3, 4]. Here, we apply this framework to
analyse the online dynamics of shallow feed-forward networks. Our focus is in
the investigation of how networks with Rectifier Linear Unit (ReLU) activation
behave when compared to the classical sigmoidal activation. The study of ReLU
is of particular interest because it is widely used in applications and its definition
is supposedly based on biological motivation. Works like [5, 6] show that these
two activation functions produce fundamentally different results, which might
have strong implications for applications.

So far, the analysis of online learning in shallow neural networks with ReLU
activation in the statistical physics framework [7, 8] was restricted to small learn-
ing rates, η. The low learning rate regime results in a rescaling of the training

time and produces results independent of η. Thus, to understand the role of
realistic learning rates, the limit η → 0 cannot be exploited.

Here we apply the representation proposed in [6], expanding the activation
function in terms of Hermite polynomials. This enables us to determine the
learning dynamics of a Soft Committee Machine (SCM) with ReLU activation
for arbitrary learning rate. In addition, we compare our results with simulations
of online gradient descent.
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2 Methods

The SCM is a special case of a two-layered fully connected feed-forward
neural network, where only the weights connecting the input to the hidden layer
are adaptive. These learnable parameters are denoted by w = {wi ∈ R

d}Ki=1.
For a given a d-dimensional input ξ ∈ R

d, the output of the network is given
by σ(ξ,w) =

∑K
i=1

g(xi) with xi = wi · ξ, where g is a non-linear activation
function, that here will be considered to be the ReLU, g(x) = max(0, x).

Consider the learning problem of approximating a rule ξ 7→ τ(ξ). For the
sake of mathematical modeling we assume that this rule can be fully realized
in the space of possible SCMs, that is, we assume that there exists a teacher

network with parameters w∗ = {w∗
n ∈ R

d}Mn=1 and output τ(ξ) =
∑M

n=1
g(yn)

with yn = w∗
n · ξ. Note that this network can differ from the student network

by having a different number of internal units M , but still with ReLU activation
function.

We consider a loss or error function given by the square deviation of the

outputs ǫ(ξ,w) = 1

2

[

σ(ξ,w) − τ(ξ)
]2
, and the performance of the network is

measured by the generalization error: the average error over the input distribu-
tion ǫg(w) = 〈ǫ(ξ,w)〉ξ. Assuming that the inputs have i.i.d. components, we
can compute ǫg analytically, obtaining an expression that only depends on

C =

(

Q R

R⊤ T

)

,where the Qik = wi ·wk, Rin = wi ·w∗
n and Tnm = w∗

n ·w∗
m

play the role of order parameters. See [9] for the full form of ǫg(C).

2.1 Online learning dynamics

Let us consider the online gradient descent dynamics, where at each step only
one example (ξµ, τµ) is presented, and the update of the learnable parameters
is given by

w
µ+1

k = w
µ
k − η

d∇wk
ǫ(ξµ,wµ),

where η denotes the learning rate and µ indexes the example.
It was shown in [3, 4] that using the above dynamics for the weight variables,

the corresponding ordinary differential equations (ODE) for the order parameters
is given by

dRin

dα = η〈δiyn〉, dQik

dα = η〈δixk + δkxi〉+ η2〈δiδk〉,

where δi = g′(xi)
(

∑

n g(yn) −
∑

k g(xk)
)

, and 〈·〉 denotes averages over the

(K+M)-dimensional normal distribution with zero mean and covariance C. To
obtain the ODE we define the “time” variable α = µ/d as the scaled example
number, take the thermodynamic limit d → ∞, and obtain the averages in the
r.h.s. using the self-averaging property of the order parameters for large systems.
Saad & Solla showed in [4] that all averages can be written explicitly as follows,



where sums are over m,n = 1, . . . ,M and j, l = 1, . . . ,K:

〈δiyn〉 =
∑

m I3(Ci,K+n,K+m)−∑

j I3(Ci,K+n,j)

〈δixk+δkxi〉 =
∑

m

[

I3(Ci,k,K+m) + I3(Ck,i,K+m)
]

−∑

j

[

I3(Ci,k,j) + I3(Ck,i,j)
]

〈δiδk〉 =
∑

n,m I4(Ci,k,K+n,K+m)− 2
∑

j,n I4(Ci,k,j,K+n) +
∑

j,l I4(Ci,k,j,l)

with the averages I3 and I4 given by I3(A) =
∫

g′(z1)z2g(z3)P (z|A)dz1dz2dz3
and I4(A) =

∫

g′(z1)g′(z2)g(z3)g(z4)P (z|A)dz1dz2dz3dz4, where P (z|A) rep-
resents a three- or four-dimensional Gaussian distribution with zero mean and
covariance matrix A.

Ca,b,... represents a lower dimensional correlation matrix (three- or four-
dimensional in our case), obtained from C by selecting the rows and columns
corresponding to the elements a, b, . . . .

2.2 Hermite polynomial representation

While integrals I3 can be analytically calculated for the ReLU, the calculation
of the I4 is challenging and previous studies of neural networks with ReLU
activation were limited to the small learning rate regime [8, 7]. In this work we
extend the method introduced in [6] and propose a representation of I4 in terms
of a power series using Hermite polynomials.

The Hermite polynomials {Hn}n≥0 form an orthogonal basis of the L2(R)

Hilbert space with respect to the inner product 〈f, g〉 = 1√
2π

∫

f(x)g(x)e−
1

2
x2

dx:

any function f ∈ L2(R), such that 〈f, f〉 < ∞, can be expressed as a generalized

Fourier series in this basis as: f(x) =
∑∞

n=0

〈Hn,f〉
n! Hn(x). In particular, for the

ReLU, g(x) = max(0, x), the coefficients can be obtained analytically:

〈H0, g〉 = 1/
√
2π, 〈H1, g〉 = 1/2, and 〈Hn, g〉 = (−1)nHn−2(0)/

√
2π for n ≥ 2

where the Hn(0) = (−1)n/2(n− 1)!! for even n, and zero otherwise.
I4 can be calculated by means of the so called Mehler’s kernel or, more pre-

cisely, its higher-dim. generalization, the Kibble-Slepian formula [10, 11]. This
kernel is constructed using the Hermite polynomials and it allows us to decouple
the variables of the multivariate Gaussian distribution, by paying the price of
introducing an infinite series for each pair correlation present.

Using the four-dim. Kibble-Slepian formula, for a symmetric correlation ma-
trix Σ with Σij = δi,j + ρij(1− δi,j) and |ρij | < 1, I4 can be represented as

I4(Σ) =
(

∏∑∞
nij=0

ρ
nij

ij

nij !

)

〈Hn1
, g′〉 〈Hn2

, g′〉 〈Hn3
, g〉 〈Hn4

, g〉 , (1)

where ni =
∑

j 6=i nij , with nij = nji and the product runs over all index pairs

(i, j) ∈ {1, . . . , 4}2 satisfying i < j.
It is worth noting that the numerical implementation of the series (1) is not

straightforward. First, when we approximate the series at a given order N we
consider all sets of indices {nij} satisfying n1, n2 ≤ N − 1 and n3, n4 ≤ N ,
such that we always have terms of the same order when expanding g and g′.



a) b) c)

Figure 1: Learning curves. (a) time evolution of the order parameters {Qik}.
(b) time evolution of the order parameters {Rin}. (c) time evolution of the
generalization error ǫg. The dashed curves denote the ODE solution, and solid
lines the average over 10 online gradient descent simulations with d = 1000 and
η = 1 with the corresponding standard deviation.

Second, the series is only guaranteed to converge for |ρij | < 1, so every time we
encounter a singular matrix the expression above cannot be applied. Fortunately,
in these cases, I4 can be reduced to a three-dim. integral that can be calculated
analytically.

3 Results

The method for the integration of the dynamics described here rely on the
numerical truncation of the series (1) at a finite order. In [6] it was shown how
the truncation error for a similar series decays with N , the maximum order of
the expansion. In our case, an analytical expression for I4 is unavailable so a
similar analysis is not possible. Thus, to validate our results we compare them
with online gradient descent simulations, with ξµi ∼ N (0, 1), for i = 1, . . . , d.

Figure 1 shows a comparison between the learning curves obtained by nu-
merically integrating the ODE and the average over 10 runs of online gradient
descent simulations. The results correspond to a setting with a student network
with K = 2 internal units learning from a graded teacher with M = 2 internal
units and overlaps given by Tnm = nδn,m, and learning rate η = 1. To compute
I4 we expand the activation function up to order N = 10 in the Hermite polyno-
mial basis, and for the simulations d = 1000 was chosen as the input dimension.
The initial condition for the order parameters are Qik(0) = k · 10−1δi,k and
Rin(0) = 10−3δi,n. To achieve the same initial conditions in the simulations, we
use the Gram-Schmidt based initialization scheme used by Straat & Biehl in [7],
and implement a correction that takes into account finite size effects during the
first steps of the dynamics, described in [12].

We found very different behaviors of the learning curves for different values
of the learning rate η, depicted in Figure 2a. For small values of η we recover the
results from the small learning rate limit [7], with the presence of a plateau. As
we increase η, we notice a shrinking length and increasing height of the plateau,
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Figure 2: (a) shows the evolution of ǫg according to the ODE for different η. (b)
shows the dependence of the symmetric plateau fixed point on η. The dashed
line marks the learning rate above which the symmetric plateau ceases to exist.

similar to networks with sigmoidal activation, up to η ≈ 1.2175. Above this
value we find a regime of non-monotonic generalization error, with an interval of
α where the network performance gets worse with more examples, resembling a
double descent behavior that is not present in the same system with sigmoidal
activation. For learning rates greater than a critical value ηc ≈ 1.2575, the
dynamics is characterized by an uncontrollable growth of the weight vector norms
and, consequently, of the generalization error.

We can also study the fixed points of the dynamics and their respective
stability. For a graded teacher and the number of internal units as described
above, we found two stable fixed points that correspond to perfect alignment
with the teacher vectors and, thus, present perfect generalization. We also have
a fixed point responsible for the symmetric plateau observed in the dynamics.
Figure 2b shows how this fixed point changes with the learning rate η. This
is an unstable point with several (but not all) negative eigenvalues, implying
that there are several directions that bring the order parameters very close to it
before the positive eigenvalue sends the trajectories away from it, explaining the
observed time spent in the plateau. This fixed point disappears at a learning
rate η ≈ 1.2545. There is yet another unstable fixed point with identical student
weight vectors, but it is not visited with the initial conditions used here.

The equilibrium points of the online gradient dynamics depends in a non-
trivial way on the learning rate, and for large values of η other fixed points
appear, making the analysis very convoluted and beyond the scope of this work.
A complete study of the role these fixed points play in the training dynamics is
left to a future project.

4 Conclusions

By applying the representation of the activation function in terms of Hermite
polynomials as introduced in [6], we obtain learning curves for neural networks
with ReLU activation at arbitrary learning rate η. To validate our method we



also compare the results with online gradient descent simulations which match
the integration of the ODE very well.

For learning rates above a critical value ηc the system no longer converges
and we observe an uncontrollable growth of the student vector norms. This
behavior is also observed for the system with sigmoidal activation as shown in
[4]. However, here we also observe a diverging generalization error since the
ReLU is an unbounded function.

We also found a range of values of η . ηc, where ǫg ceases to decrease
monotonically with α and presents an interval of α where the performance gets
worse with more training data, resembling a double descent behavior [13, 14].

The derivation of I4 can be performed for other activation functions, includ-
ing cases of mismatch. However, the ReLU has some simplifying properties such
as homogeneity, g(λx) = λg(x) and 〈Hn, g〉 = 0 for odd n ≥ 3. Without these
simplifications, the time to integrate the ODE increases substantially.
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