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Abstract. Large language models are powerful but computationally
very expensive. We investigate dynamic sparsity in attention mechanisms,
using the OPT model as a case study. We explore the dynamic nature
of redundancy in attention heads and analyze which components of the
model provide sufficient information to predict sparsity effectively. Our
findings highlight the norm of attention outputs as a reliable criterion for
ranking head importance. We systematically evaluate embeddings across
layers and time steps, showing that dynamic sparsity predictions can be
achieved early in the model pipeline with minimal loss in accuracy. By
elucidating the mechanisms underlying dynamic sparsity, this work lays a
foundation for more efficient and scalable transformer models.

1 Introduction

Large language models (LLMs) like GPT, OPT and BERT have transformed
natural language processing by leveraging the power of transformer-based archi-
tectures and attention mechanisms, enabling impressive advances in language
understanding and generation [I} [2]. Their success has spurred interest in ex-
tending attention-based models to various fields, including computer vision, sig-
nal processing, and video analysis [3|, [4, [5]. However, as these models grow
in size [6], their computational demands also increase, making them resource-
intensive and challenging to scale [7, 8, @]. To address this problem, efficiency
improvements of the models have been explored [I0] [IT], with sparsity emerging
as a promising approach to reduce computation without sacrificing performance
[12, 13, M4]. Our study specifically examines the attention mechanism within
the OPT model, exploring and analyzing patterns of dynamic redundancy in
attention mechanisms, aiming to identify efficient ways to reduce the amount
of redundant computation while maintaining model performance. To achieve
this, we trained sparsity predictors that selectively skip attention heads based
on their contribution to the model’s output, similar to [I5]. Our research extends
this approach with a detailed analysis, to better understand which information
in the model can predict sparsity efficiently, both across layers and over time.
Through this analysis, we highlight the potential of leveraging selective dynamic
sparsity and to improve the efficiency of large-scale models.
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2 Dynamic Sparsity in Transformer Architectures
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Fig. 1: A: Activation sparsity across three different cuts of OPT model com-
ponents, averaged over layers. B: Impact of masking attention heads on model
perplexity in a text generation task.

We evaluated dynamic sparsity on the OPT-1.3B model, where we removed
or replaced unimportant attention heads using different methods. As discussed
above, the attention heads do not inherently produce zeros, leading to an ap-
parent lack of sparsity in the activations (see Fig. A). Therefore, unimportant
attention heads, rather than being masked, might be better replaced by static,
precomputed embeddings. This matter has been studied in [16, [I7], where, in
most cases, the attention map or pattern of some or all heads was replaced
with a static pattern. We explored whether substituting low-norm heads with
precomputed static heads could offer any performance advantage over simple
masking in OPT-1.3B. To do so, we ranked heads based on the Euclidean norm
to determine their importance [15].

Importantly, importance scores appear to have a dynamic nature. That is, as
the input context changes, the importance scores of the attention heads may vary.
For replacing heads, we computed static embeddings by averaging the output of
each attention head over a WikiText-103 training set, storing these averages to
substitute for detected unimportant heads. Fig. B shows the perplexity, e
with cross-entropy H, quantifies prediction uncertainty, on WikiText-103 evalua-
tion set for different sparsity criterions, random: randomly masked heads (base-
line), norm: Euclidean norm, masked heads replaced with zero vector replace
1: masked heads replaced with the average output of the same head, replace 2:
refers to masked heads replaced with the average output of norm-ranked heads.
The x-axis represents the number of masked or replaced heads. We observed no
significant performance improvement of replacing over masking. This suggests
that the model can effectively ignore non-zero but low-norm heads. In summary,
our results show that Euclidean norm is a viable importance score and masking
is as good as replacing, demonstrating that attention heads have a high level of
dynamic sparsity.



3 Predicting Sparsity

As highlighted in the previous section, the potential sparsity in attention heads
exhibits a dynamic nature and can be exploited without significant loss of per-
formance. This approach however does not provide computational savings, since
calculating all head outputs remains necessary to calculate the norms. While
static approaches exist for masking attention heads, they inherently disregard the
dynamic changes in attention head importance [I8, [19, [20]. Retaining dynamic
sparsity requires predicting head importance prior to initiating the computation
of attention heads. The central question addressed in this work: Which com-
ponents within the OPT model contain sufficient information to enable accurate
predictions of attention head ranking, while minimizing memory and computa-
tion overhead? Our focus is on achieving early prediction of importance scores,
allowing for efficient memory management and computational savings.

3.1 Prediction Through Layers
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Fig. 2: A: Sparsity prediction: Embeddings from the N — th layer guides a
predictor that generates a binary mask for the M —th layer. B: Effect of sparsity
prediction on model perplexity across different depths. C: Effect of sparsity
prediction on model perplexity. D: Sparsity prediction across time steps. E:
Euclidean norms of attention heads for two consecutive tokens (”Rob-bery”).

In our first approach to predict sparsity in OPT, we trained simple feedfor-
ward models. Specifically, we used a two-layer MLP with 256 hidden units per
layer, ReLLU activations, and a sigmoid output to take embeddings as inputs



and predict indices of attention heads to be masked through layers, (see figure
.A. We experimented with different depths of the predictors (how many layers
in advance are predicted), as shown in figure B. For each trial, we used the
embeddings from a layer M levels prior to the current as input to predict the
masked heads in the current layer. Figure [2]B shows the results on OPT-1.3B.
The degradation in performance was minimal compared to static masking ap-
proaches, trained model with an identical matrix. Notably, for some depths M,
such as 1, 2, or 5, the predictor’s performance remains close to that achieved
using embeddings from the current layer. These results suggest that all layers
within the OPT model provides sufficient information for training a sparsity
predictor across attention heads. Early prediction of masked heads from initial
layers can have a small impact on model performance.

3.2 Prediction Through Time

Next, we aimed to push this approach further by exploring the feasibility of
predicting attention head sparsity across time steps. Given that many LLM
tasks operate in an autoregressive fashion, the model retains information from
previous time steps before processing new tokens. We investigated whether this
sequential information might inform sparsity predictions in advance of calculat-
ing new token embeddings. To examine this possibility, we analyzed the norm
values of attention heads in the smallest OPT model (125M parameters) across
consecutive tokens (Fig. [2C-E). Fig. 2D illustrates the approach. In Fig.2|E, we
illustrate the norm values for two successive tokens within the word “robbery,”
tokenized into “rob” and “bery.” There is a noticeable, albeit subtle, similarity
between the norm patterns of these consecutive tokens. This similarity moti-
vated our approach to train a sparsity predictor over time. Figure 2]C shows
the results. Although the highest accuracy is still achieved using embeddings
from the current layer and, secondarily, from the last layer, the performance
of timewise prediction remains promising, particularly when compared to ran-
dom sparsity. This finding suggests that leveraging prior time-step embeddings
to guide sparsity predictions could enable efficient head masking with minimal
impact on model accuracy, further enhancing computational efficiency.

3.3 Results

To quantify the results, we tested the model on three datasets: WikiText, PTB,
and BookCorpus, and trained sparsity predictors on OPT models with size 1.3B,
2.7B, and 6.7B. Each model was evaluated for three different sparsity ratios:
25%, 50%, and 75% (0% denotes the non-sparse baseline). Within each con-
figuration, we compared three methods for predicting sparsity: current: using
embeddings from the current layer; last: using embeddings from the immediately
preceding layer; and time: using embeddings from the same layer but from the
previous time step. The results are shown in the table [Il For all methods, the
performance drop was insignificant compared to the original (0%) model for the
25% sparsity case. Larger sparsity levels resulted in performance drops. These



model ‘ method ‘ 0% 25% 50% 75%

’ WikiText dataset ‘
OPT current 13.5 £0.07 | 25.9 +0.26 149.4 4+6.48
13B last 13.5 | 13.6 £0.04 | 25.2 +0.32 158.7 +£5.32

time 13.8 £0.06 | 31.6 +1.06 230.8 +9.20
OPT current 11.5 £0.03 | 15.8 £0.19 109.2 £5.15
9 7B last 11.4 | 11.5 +0.02 | 16.4 +0.33 128.0 £9.47
time 11.6 £0.02 | 19.6 +0.28 160.5 +£11.83
OPT current 10.0 £0.02 | 16.7 +£0.35 128.0 +9.62
6.7B last 10.0 | 10.0 £0.02 | 17.2 £0.42 134.6 £7.43
time 10.1 £0.04 | 19.4 +0.50 178.2 £12.34

] PTB dataset
OPT current 13.5 +0.03 28.1 £1.8 109.48 +10.84
13B last 13.4 | 13.5 £0.02 | 26.9 +£1.07 109.8 £9.10

time 13.7 £0.05 | 31.1 +£2.99 140.3 +4.90
OPT current 11.8 £0.02 | 16.8 +0.21 88.5 +4.14
9 7B last 11.8 | 11.8 £0.02 | 17.0 +£0.27 97.0 £7.77
time 12.0 £0.01 | 20.5 +0.28 143.3 £5.06
OPT current 10.4 £0.03 | 17.4 +0.26 108.2 £13.23
6.7B last 10.4 | 10.4 +£0.01 | 17.4 +0.41 107.41 +7.85
’ time 10.5 £0.02 | 19.2 +0.14 147.4 £16.00

’ BookCorpos dataset ‘
OPT current 8.1 £0.01 19.2 +1.38 78.9 +£3.81
1.3B last 8.1 8.1 £0.02 23.1 £0.48 89.3 £2.76

time 8.1 £0.01 | 20.29 +£1.05 77.55 £5.01
OPT current 6.9 £0.01 9.2 +£0.11 49.3 +£4.13
9 7B last 6.7 6.9 +0.01 9.3 £0.15 49.4 +2.48
time 7.0 £0.01 11.0 £0.07 60.5 £3.52
OPT current 6.2 +0.01 9.7 £0.18 72.9 +£4.98
6.7B last 6.2 6.2 +0.00 9.8 +0.15 79.1 £9.04
time 6.2 +0.01 9.9 +0.16 98.8 +8.21

Table 1: comparison of perplexity results across three datasets for the text
generation tasks and sparsity prediction method (current, Last 1D, and last).

results confirm that Euclidean norm provides a reliable importance criterion.

4 Conclusion

Overall, our experiments demonstrate that both deep layer prediction and time-
wise prediction have potential, performing nearly as well as predictions from the
current layer, especially at lower sparsity ratios < 30%. This indicates that OPT
models, even in smaller sizes, contain sufficiently reliable information across lay-
ers and timesteps to support effective sparsity predictions, allowing selective



attention head masking without a substantial drop in performance. In conclu-
sion, our results suggest that OPT models can be effectively sparsified using
these prediction methods, enabling more computationally efficient models. This
approach offers a viable path for implementations of resource management, that
exploit dynamic sparsity while maintaining accuracy.
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