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Abstract. Artificial Neural Networks excel at identifying individual
components in an image. However, out-of-the-box, they do not manage to
correctly integrate and interpret these components as a whole. One way
to alleviate this weakness is to expand the network with explicit knowl-
edge and a separate reasoning component. In this paper, we evaluate an
approach to this end, applied to the solving of the popular board game
Rummikub. We demonstrate that, for this particular example, the added
background knowledge is equally valuable as two-thirds of the data set,
and allows to bring down the training time to half the original time.

1 Introduction

Artificial Neural Networks (ANNs) are considered a tried and tested method to
identify objects in an image. However, correctly interpreting these objects in
relation to each other to form a complete picture remains difficult, as demon-
strated in the literature [1, 2]. One way to overcome this issue is by adding
explicit background knowledge about the identified items and their relations. In
this work, we apply this approach to the popular boardgame Rummikub. Con-
cretely, we consider the task of correctly detecting all the tiles in a photo of a
Rummikub game state. We compare the performance of a “vanilla” ANN setup
to one that extends this setup with explicit knowledge and reasoning by means
of the IDP-Z3 [3] system. In the following paragraphs, we introduce Rummikub
and IDP-Z3.

Rummikub1 is a popular board game in which players are given tiles defined
by a number n ∈ [1, 2, . . . , 13] and a color c ∈ [red,blue,black, yellow]. To win
the game, players need to be the first to place all their tiles in the center of the
game field. Tiles may only be played when they correctly form a set. Two types
of sets exist: a group, in which 3 or 4 tiles share the same n but have different
c, and a run, which is a series of 3 to 13 tiles of same c with subsequent n. The
game also contains two joker tiles which may be used as “wildcards” to form
sets, as indicated by a smiling face. All these concepts are illustrated in Fig. 1.
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(a) Example of a group. (b) Example of a run, containing a joker.

Fig. 1: Rummikub set examples

IDP-Z3 is a logical reasoning engine for first order logic. It adheres to the
Knowledge Base Paradigm [4], which states that knowledge should be modeled
declaratively in a Knowledge Base (KB) regardless of its use. As such, the
KB is merely a “bag of knowledge”.To put this knowledge to use, it can be
given to a reasoning engine such as IDP-Z3, which supports several kinds of
inference tasks. This approach supports reusability: once formalized, the KB
can be re-used to solve different types of problems in the same problem domain
without modifications. I.e., the same KB could be used to check satisfiability,
find (optimal) solutions, derive consequences, explain incorrectness, etc.

The specific modeling language used for IDP-Z3 is FO(·), which extends
classical first order logic by adding concepts (e.g., types and aggregates) to
make modeling more user-friendly. As an example, consider the following logical
formula which formalizes the rule of a correct Rummikub group.

∀t1, t2 ∈ Tile : t1 ̸= t2 ∧ set(t1) = set(t2) ∧ group(set(t1)) ⇒
number(t1) = number(t2) ∧ color(t1) ̸= color(t2).

This can be read as: “for all different tiles t1, t2 within a group must hold that
their numbers are the same and their colors are different”.2

2 Methodology

We use a custom image dataset consisting of 285 manually captured images of
Rummikub playing fields, employing three different zoom levels, four different
lighting levels and two different backgrounds. Special attention was paid to
ensure the images are realistic: they all contain a varying number of only valid
sets, at various positions and angles. Each set ranges from 3 to 13 tiles, and is
diverse in terms of colors and numbers. The tiles are also often not perfectly
aligned, much like they would be in a real game. Images were annotated for tile
bounding boxes and tile number/color, with a total of 4336 tiles annotated. Our
dataset is publicly available through Kaggle 3.

To correctly detect all tiles in a depicted Rummikub game state, we propose
the pipeline shown in Fig. 2. It consists of four steps:

2For a more detailed explanation on FO(·), we refer to [3].
3https://www.kaggle.com/datasets/sverrela/rummikub
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Fig. 2: Overview of the tile detection/classification pipeline

Step 1 - Tile detection: Bounding boxes are generated for each individual
tile in the image by means of a standard single shot multi-box detec-
tor (SSD) [5] trained on our dataset.

Step 2 - Clustering : A hand-crafted algorithm clusters the individual bounding
boxes into sets. This clustering algorithm is designed to be robust to size
and orientation, so that it can handle the random nature of the sets.

Step 3 - Number/Color classification: Each detected tile is classified for n and
c by means of two ResNet18 [6] networks trained on our dataset. The
output of each network represents the confidence levels assigned to each
possible n and c for each tile. A pure ANN setup would at this point
assign the class with the highest confidence to each tile. Instead, we pass
all confidence values on to the next step for further processing.

Step 4 - Correction: In this final step, the confidence levels obtained in Step 3
are used to model an optimization problem at the level of an entire set.
Concretely, instead of assuming the most likely class for each tile indi-
vidually, we try to find the most likely class for all tiles in a set, given
that the set must be correct (i.e., we explicitely assume the shown game
state to be valid). This way, we are able to enrich our detections with
background knowledge.

The optimization problem in Step 4 is straightforward. We model the confi-
dences in IDP-Z3 using binary functions of the form attr conf : Tile × Attr →
Number, and add them to our Rummikub KB. To compute the overall confi-
dence score of a possible solution, we use the following straightforward sum:

acc() =
∑

t∈Tile,c∈Color

color conf (t, c)|color(t) = c

+
∑

t∈Tile,n∈Number

number conf (t, n)|number(t) = n.

In other words, we sum the confidences of the colors/numbers that have been
assigned to the tiles via the color and number functions. We then let IDP-Z3
find the optimal assignments of these functions, giving us the classifications with
the highest confidences that are feasible.



As a concrete example, consider the following color confidences :

Tile 1: (1, red) → 0.8, (1, blue) → 0.1, (1, black) → 0.05, (1, orange) → 0.05,

Tile 2: (2, red) → 0.2, (2, blue) → 0.7, (2, black) → 0.09, (2, orange) → 0.01,

Tile 3: (3, red) → 0.5, (2, blue) → 0.15, (2, black) → 0.05, (2, orange) → 0.3.

Ignoring the numbers for the sake of the example, and assuming the set is a
group, all tiles must therefore have a different color. As such, instead of the
highest likely individual colors (red, blue, red), IDP-Z3 will correct these classi-
fications to (red, blue, orange) as the most confident feasible classification.

3 Results

All code required to reproduce the results discussed in this section is available
from our dedicated GitLab repository4. All evaluations are performed using an
Intel Xeon E5-2630 v3 with an NVIDIA Quadro P2000 and 32 GB of memory,
using our full dataset as test data.5 We ran each experiment 10 times, and
report averages and standard deviations.

We evaluated the pipeline in terms of the size of the training data, by limiting
the available data to a % subset, as shown in Fig 3a. For every run, ResNet18
color and number models were trained for 5 and 20 epochs respectively. A
few observations are noteworthy. First, when using only 5% of the data, the
context-based correction step greatly increases the total image accuracy from
9.31±2.63% to 55.56±11.50%. Second, the full pipeline outperforms the pure
ANN approach, even at its highest reached accuracy (98.76±0.15% @ 90% vs.
94.79±1.85% @ 95% resp., or a 3.97% increase). Third, it seems that, in general,
adding the reasoning step seems to lower the standard deviations, acting like a
“stabiliser” of sorts. For example, between 30 and 45% of the data, the ANNs
had a standard deviation between 5.57 and 8.5, while the full pipeline’s standard
deviation remained between 1.37 and 2.8. Fourth, and most interesting, when
taking the detections into account, the highest accuracy reached by the classifiers
is already reached when using only about 30% of the data (with IDP-Z3 @ 30%:
94.98±1.79%, without IDP-Z3 @ 95%: 94.79±1.85%), as indicated by the dashed
red line.

To evaluate the effect of training time, Fig. 3b shows an analogous experi-
ment conditioning on the number of epochs instead of training data. Here, both
the ResNet18 color and number models are trained for x epochs. The same
tendencies are apparent, though the initial jump in accuracy seems to be no-
tably higher (37.61±4.14% to 86.83±3.32% after one epoch). Again, the highest

4https://gitlab.com/EAVISE/sva/knowledge-enhanced-rummikub-detector
5During training, the ResNet18 networks are being fed the annotated bounding boxes, while

during evaluation, they receive their input from the SSD network, which is slightly different.
Note that, while typically using the same data for train and testing purposes is considered bad
practice, we argue that in this particular case it allows to evaluate the pure ANN approach
in “ideal” circumstances, further highlighting the added benefit of adding a logical reasoning
step.
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(a) Accuracy when training on % of data (b) Accuracy when training for x epochs

Fig. 3: Ablation experiment results. The dashed red lines indicate the highest
accuracy reached by the ANN-only approach.

accuracy reached by the classifiers is achieved much earlier when adding logi-
cal reasoning: 5 epochs are sufficient instead of 20 (with IDP-Z3 @ 5 epochs:
95.64±1.84%, without IDP-Z3 @ 20 epochs: 95.56±1.66%). Similarly, the full
pipeline outperforms the pure ANN approach (98.84±0.00% @ 13 epochs vs.
95.56±1.66% @ 20 epochs resp.), and the standard deviations have decreased
across the board.

It is, however, important to note that the correction step does add additional
inference time, albeit the effect appears to be rather limited. In our experiments,
tile detection, clustering, and classifying required about 0.04s per tile, while
correcting an entire set requires another 0.095s. E.g., for a set consisting of 5
tiles the pipeline would require 0.2s to generate the classifications, and another
0.1s to correct them if necessary.

4 Related Work

In recent years, there has been a rise in approaches aimed at extending ANNs
with explicit reasoning. The most notable approach, as shown in works such as
DeepProbLog [7] and NeurASP [8], combine the two on a true neurosymbolic
level, tightly coupling the neural networks with logic. In this approach, the
logic program is evaluated throughout the training process itself, resulting in
increasingly higher accuracies. However, in general, such systems have difficulties
with scaling to complex domains, and are slow to train. For a more complete
overview of neurosymbolic approaches, we refer to [9].

The work that comes closest to ours is that of Mulamba et al. [10], who
present a similar pipeline approach, but for the detection of digits in a (partial)
Sudoku. However, they did not evaluate the effect of data or training time,
and instead only report on the final accuracy. Furthermore, the unknown tile
positions in Rummikub, as opposed to fixed grid positions for Sudoku, make it
a harder problem to solve.



5 Conclusion

We have demonstrated an approach to improve the accuracy of a computer vision
system for the detection and validation of Rummikub game states, by adding
explicit reasoning on background knowledge. Through our evaluations, we have
shown that, for this problem, background knowledge is worth as much as two-
thirds of the data set, or slightly more than half of the training time. In this
sense, our approach is most useful in situations where data is scarce or difficult
to gather, or when the ANNs are constraint by hardware limitations, such as in
edge devices. However, our approach can only succeed when there exists a clear
relationship between all output classes, which is not always the case. Among
others, examples of real-life applications satisfying this constraint include sensor
fusion and input detection in forms (e.g., tax forms).

As part of future work, we intend to compare our approach to a more neu-
rosymbolic approach by implementing the Rummikub example in, e.g., NeurASP.
We also plan to extend the work to allow the pipeline to suggest corrections when
errors (i.e., invalid sets) are present in the image. Finally, we expect to further
evaluate our pipeline on some of the real-life problem domains mentioned above.
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