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Abstract

This paper describes theoretical aspects of our ongoing work in evolving
recurrent dynamical artificial neural networks which act as sensory-motor
controllers, generating adaptive behaviour in artificial agents. Some short-
comings in mainstream artificial neural network research are identified,
and the rationale for our approach is discussed. This involves the use of
recurrent networks of artificial neurons with rich dynamics, resilience to
noise (both internal and external); and separate excitation and inhibition
channels. The networks allow artificial agents (simulated or robotic) to
exhibit adaptive behaviour. The complexity of designing networks built
from such units leads us to use an extended form of genetic algorithm,
which allows for incremental automatic evolution of controller-networks.
Some recent results are reviewed, using these methods with simple visually-
guided robots.

1 Introduction and Rationéle

Increasingly, practitioners of artificial neural network research are realising that
both the complexity of model neurons, and also the styles of network architec-
ture, need to be extended beyond those employed in the much-cited work of the
early 1980’s. Certainly; models such as Hopfield networks, or back-propagating
multi-layer perceptrons, played an important historical role in making parallel
distributed processing an acceptable paradigm of study; but if we are to succeed
in either understanding biological nervous systems, or in building artificial neu-
ral networks which exhibit intelligent behaviour, it is likely that we will have to
move to more complex models.

But what form should this complexity take? The notion of ‘complexity” is
often highly subjective, and hence problematic. We should avoid introducing
unnecessary complications, but (more importantly) we should not be deceived
by our own simplifications. In artificial neural network (ANN) modelling, simpli-
fications are made for various reasons. Often, there are issues of mathematical
tractability: certain model neurons or network architectures are easier to for-
mally analyse than others. In other cases, the ease with which the models can
be simulated or built in available hardware is an important factor, and appro-
priate simplifications are made. In either case, it is important to note that the
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‘simplification’ is made for our convenience: the ANN is easier to construct or
understand. The problem with this approach is that in using simplified models,
we may actually be making life harder for ourselves as scientists; because the
tasks we try to make our models perform may, by their very nature, require
greater complexity than is possible without using clever ‘trick’ techniques, or
large and unwieldy modular assemblies of simple networks.

There are two simplifications which are very common in ANN models: most
models in the literature have very simple (or non-existent) dynamics; and arbi-
trary connectivity is often avoided. Networks with many feedback connections
and delays between units are much more challenging to either analyse, simulate,
or build, than are networks such as the common three-layer back-propagation
network. Yet for many interesting and important problems, feedback and in-
trinsic dynamics are likely to be essential. There is ample evidence in the neu-
roscience literature from most branches of the animal kingdom, that biological
neural networks exhibit rich dynamical behaviour and exploit feed-back connec-
tions to great effect.

Many ANNs are developed purely to transform between representations or
encodings which have been formulated by their designers. Such networks may
be worthwhile engineering artefacts, performing useful computations; but it is
important to remember that the primary evolutionary pressure on the devel-
opment of biological nervous systems (which we seek to understand or draw
inspiration from) was whether a particular nervous system helped an animal
survive in environments which were dynamic and uncertain. That is to say, ner-
vous systems evolved where they generated adaptive behaviours (i.e. behaviours
which are likely to increase the chances that the individual animal survives to
reproduce). We, in common with a growing number of other researchers, believe
that the generation of adaptive behaviours should form the primary focus for
research into cognitive systems, and that issues of purely transforming between
representations or encodings are, at best, secondary.

It is the above factors that have influenced our recent work, discussed in
the remainder of this paper. We have created ANNs which generate adaptive
behaviours in artificial “animals” (i.e. robotic or simulated agents). Our agents
have tactile sensors and minimal visual systems (two oriented photoreceptors).
The ANNs use highly recurrent networks of artificial neurons (called “units”),
with propagation delays as signals pass across links between units. The units
have separate excitation and inhibition channels, and operate in the presence
of noise introduced both internally (i.e. within each unit) and also externally
(i.e. in sensory-motor transduction). The transfer functions for excitation and
inhibition in each unit are nonlinear with discontinuities in the first derivative.

Naturally, either analysing or designing networks composed of such units is
a challenging and difficult task. Nevertheless, we believe that units of the sort
used in our work are closer to the minimum complexity acceptable for generating
adaptive behaviours than are the simpler units of prior work. For this reason,
the problems of design and analysis have to be tackled, rather than avoided by
introducing simplifications. Qur approach has been to, as far as is possible, aufo-
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Figure 1: Block diagram showing operations within a single model neuron.

mate the design of the networks by employing our own extended form of genetic
algorithm, sSAGA. Whereas most genetic algorithms are essentially performing
optimisation in a fixed parameter space, SAGA allows for the dimensionality of
the parameter space to be under evolutionary control, by employing variable-
length genotypes. In terms of the networks, this means we are able to start with
a population of agents each of which has a minimal number of units: extra units
may be introduced by the genetic operators, and will only be retained if they
increase the evolutionary success of the mutated agent: our automatic network
generation is truly incremental.

Below, the neuron model and network simulations are discussed. Details of
how the networks are encoded as genotypes suitable for use with SAGA are given.
Next, we discuss the adaptive behaviour evolved in our simulated agents, and
present brief analysis of a resultant evolved network. This paper is necessarily
brief: for further details of our rationale, see [1, 5]; for further details of sAGA, see
[4]; for full details of the visual sensing employed, see [2]. For a more complete
version of this paper, see [3].

2 The Model Networks

Because our networks are recurrent, there is no clear divide between different
‘layers’ (c.f. input, hidden, and output layers found in back-propagation net-
works). Nevertheless, for the purposes of generating adaptive behaviour, it is
necessary to designate some units as receiving input from sensors, and others
as producing outputs to actuators (such as motors). In practice, this designa- -
tion may be distorted by the opportunistic evolutionary process; for instance, a
unit linked to a sensor which is rarely triggered may be recruited as an internal,
or ‘hidden’ unit. The remainder of this section discusses details of the neuron
model, and how the networks architectures are encoded as ‘genes’ which can be
operated on by the SAGA genetic algorithm.

2.1 The Neuron Model

The neuron mode! we have employed in our work to date has separate channels
for excitation and inhibition. Values propagate along links between units, and
are all real numbers in the range [0,1]. All links are subject to a delay At¢. A
schematic of the operations for one unit is shown in Figure 1. The inhibition
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channels operate as a ‘veto’ or ‘grounding’ mechanism: if a unit receives any
inhibitory input, its excitatory output is reduced to zero (but it can still inhibit
other units). Excitatory input from sensors or other units is summed: if this
sum exceeds a specified inhibitory output threshold #;,, the unit produces an
inhibitory output. Independently, the sum of excitatory inputs has uniform noise
(distribution: [-n,+n] € R) added, and is then passed through an excitation
transfer function, the result of which forms the excitatory output for that unit,
so long as the unit has not been inhibited.

- The excitation transfer function takes the form: F(z) = T[(z — t;)/(tu —t1)]
where t; and t, are lower and upper threshold levels, and 7[¢'] = 0 iff ' < 0;
T’} = 1iff ¢ > 1; and T[z'] = 2’ otherwise. In most of our work, we have
used: # = 0.0; t, = 2.0; t;, = 0.75; and maximum noise n = 0.1; for all units.

The dynamic properties of these units are simulated using fine time-slice
approximation techniques, with random variations in time-cycling to counteract
periodic effects. To date, we have used unit weights and delays on all links in
the network, and found that the dynamics produced are sufficiently sophisticated
for current experiments. Nevertheless, we are actively investigating the use of
variable weights and delays, placing these also under evolutionary control.

2.2 The Genetic Encoding

The network architecture has to be encoded as a ‘genotype’. We have used a
genetic encoding scheme which stores the “wiring diagram” (connectivity data)
for the network as a string of alphanumeric characters. The encoding has been
developed to be robust with respect to the mutation and crossover operators,
where ‘robustness’ indicates that, given two parent genotypes encoding valid
networks, an offspring genotype formed through crossover and mutation also
encodes a valid network. For further details of the encoding, see [5]. A network
is valid insofar as all the links in the network connect one unit to another: for
each individual agent, the control network is initially randomly connected. It is
our evolutionary leaining algorithm, SAGA that develops these random networks
into useful control architectures. This differs from other genetic algorithms in
that it allows for variable-length genotypes, which allow for the dimensionality
of the search space to be varied under evolutionary control; and the initially
random population of individual genotypes converges, over evolutionary time,
to a situation where the population is evolving as a species. See [4] for full
details.

3 Evolving a Visually Guided Robot

Here we briefly present some recent results. We attempted to evolve networks for
a simple adaptive behaviour, which was for a simulated! visually guided robot
to spend as much time as possible in the centre of a circular arena.

1The simulations involve accurate physical and kinematic models of a real robot constructed
at Sussex. Vision was simulated using ray-tracing with anti-aliasing via 16-fold super-sampling.
See [2] for further details.
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Figure 2: Evolved network and behavioural outputs. On left is final best-performing network,
evolved over 100 generations. The left-hand units take inputs from bumpers, whiskers and eyes;
the right-hand units control outputs to motors. Some may be redundant, e.g. unit 0 for the
front bumper. There are excitatory and/or inhibitory feedback links to all units, including to
inputs. Here, all links are of unit weight and unit time delay.

On right are graphs from monitoring the performance of one network over a single evaluation
‘lifetime’. As is favoured by the evaluation function for this experiment, the distance from
the centre of the arena decreases to 0, and the robot velocity then drops. The right wheel
is moving forwards at all times. The left changes in direction; forwards early on, with some
variation which steers the robot to the centre, it then reverses so that the robot twirls near
the centre. The noise, which is a crucial part of the dynamics, can be seen in the activations
of some units shown here.

Each individual robot was positioned at a randomly chosen point near the
edge of the arena, in a random orientation. The robot then had a fixed finite
‘lifetime’, in which it had to get as close to the centre of the arena as it could, and
then stay there. The robot’s performance was evaluated by taking the gaussian
function of a discrete temporal integral of its distance from the arena-centre
during its lifetime: the more time the robot spent at or near the centre, the
higher the score. The robots have two independent drive-wheels and a third
free-wheel. The drive wheels may go at either full or half speed, either forwards
or reverse, so the robot is capable of rotating on the spot, or travelling in circles
of different radii, or in straight lines.

Each robot had 6 tactile sensors: two ‘bumpers’ (at front and back), and
4 radially symmetric ‘whiskers’. The tactile sensors are primarily of use in
detecting collisions with walls of the arena, and appropriately reorienting. The
robot also has two directionally-sensitive photoreceptors, which allowed it to
visually sense its environment (the walls of the simulated arena are dark, while
the floor and ceiling are light).

We created a population of 60 robots with initially random genotypes, and
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evaluated each one over 8 ‘lifetimes’. At the end of the evaluation, we took the
robot’s worst score as a measure of its performance, to encourage robustness in
the face of noise. When all 60 robots had been evaluated 8 times, the genotypes
of the higher-scoring robots were ‘inter-bred’ using SAGA principles to create a
new generation of 60 individuals. We repeated this process for 100 generations.

Results are shown in Figure 2. As can be seen, the network does not re-
semble the sort of networks which are traditionally published in the literature,
but then this network was not designed by a human: it evolved according to
Darwinian principles. Yet the graphs in figure 2 clearly indicate that the robot
is approaching the centre of the arena and staying there. For full details and
further analysis of the network, see [3].

4 Conclusion

This paper has concentrated on theoretical aspects of our work, which is mo-
tivated by concerns that prior network models may have been over-simplistic,
and have not paid sufficient attention to the generation of adaptive behaviour.
We have demonstrated that, using a neuron model with elementary dynamics,
recurrent networks can exhibit rich dynamical activity in which noise plays a
role, and they can be used for evolving controller networks that generate adap-
tive behaviour. The evolved networks have a distinctive appearance, in that
they do not resemble networks designed by humans. As far as we know, we
are the only research group who have successfully employed truly incremental
evolution in creating dynamic recurrent networks for the generation of adap-
tive behaviour. We expect that our techniques will, as time progresses, become
standard practice.
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