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A logic network is a network of binary logic functions, which may be
expressed as a higher-order neural network. We consider asynchronous
operation mode and characterize stable networks through corresponding
Lyapunov functions. We distinguish a special type of Lyapunov functions
called pure and reveal their properties with relation to ordinary Lyapunov
functions. We also introduce some order relations among logic functions and
among logic networks, which play a crucial role in characterizing the existence
condition of Lyapunov function in general for logic networks.

1. Introduction

Lyapunov function, also known as Energy function, is a function associated with
a dynamical system whose function value decreases when the state change proceeds.
Hopfield (1982) pointed out that there is such a function for any binary
asynchronous neural network if the connecting weights are symmetric and if there
are no self-loop connections. Several works which try to generalize his case
followed. Braham and Hamblen (1988) showed that zero-diagonal condition of
Hopfield can be replaced by non-negative diagonal condition. We extended
symmetry weight condition to quasi-symmetry one (Kobuchi, 1991 Kobuchi and
Kawai, 1991). Goles (1987) showed Lyapunov functions for synchronous neural
networks. Baldi (1988) treated higher-order networks and introduced nonguadratic
Energy functions. Lyapunov functions for continuous variable neural networks
were shown by Schiirmann (1989), to name a few.

We here treat logic function networks regarding them as higher-order neural
networks which have Lyapunov functions. Since the existence of Lyapunov
functions for such networks means that there are no cyclic states whose periods are
greater than one, any initial state configuration ultimately approaches certain stable
state.

We investigate how and when a given logic network or a higher-order neural
network has a Lyapunov function. In so doing , we introduce the concept of pure
Lyapunov function, and relate it with an injective state function. We also consider
orderly dependent logic functions which are defined here to cope with arbitrary
logic networks with Lyapunov functions.
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2. Lyapunov Functions for Logic Networks

Consider n logic elements designated by c;'s where i = 1, 2, ..., n. Each element ¢;
has a state sj which takes one of the two logic values 0 or 1. The next state function
of an element c; is defined by a logic function fj(s1,82,...,sn) : {0,1}® — {0,1}. The set
{fi(s1.82.....sn) }i=1, 2, ..., n } then defines a network architecture of logic functions
or a logic network and we denote it as (n; f1,f2,...,fn). If an element is chosen
arbitrarily out of the n elements, and if it undergoes possible state change through
the function, we are defining an asynchronous operation mode. The global state
transition function of (n; f1,£2,....f,) under this mode is denoted as #: {0,1}? —

n
2{0’1} . In this note, we consider only asynchronous logic networks. A network
under consideration is denoted as (n; f1,£2,....,fn; P).

2. 1, Stable Logic Networks
For a given logic network M = (n; f1,£2,....f1; %), we define a state transition

relation =>ps or simply = (when M is understood) over the set of states § = {0,1}2
as follows.

Foranyaandbin S, a=> bifand only if b € Fa).
Since we are considering only asynchronous operations, a = b implies that the
Hamming distance of a and b is less than or equal to 1. Let = denote the reflexive
transitive closure of =>.

Forastateain S, if a = b implies a = b, then a is called a stable state. We here
define a stable logic network as follows.
Definition 2. 1.

Consider a logic network M = (n; f1,f2,....,fn; 7). Foranyaand b in S = {0,1}"
such that a # b, assume that a =y b. The state a is called acyclic if b 2/ ¢
implies ¢ # a. A logic network M is called stable if every a in S is acyclic.

Note that a stable state is acyclic because the assumption part is vacuous in the
above definition,

Leta=(aj, a, ..., an) be a state in S. If aj = 0, we write such a state as aj(), and if
aj=1, as ajq). Thatis, aj) = (a1, a2, ..., 8j-1, 0, aj+1, ..., an) € S and aj(1)= (a1, a2, ...,
3i-1, 1, 8j41, .. ap) € S.

Property 2. 2.

In a stable logic network M, one of the following three cases occurs where i is an
arbitrarily chosen site of state transition.

(1) aj) = aiq) = 3iq) ;

(2) aiqy = ai) = ai);

(3) aiy) # aig) and aj) P ajq).
2. 2. Lyapunov Functions

Now we define a Lyapunov function for a logic network, which is another basic
concept.
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Definition 2. 3.
A state function E(s) : {0,1}® — R is said to be a Lyapunov function for a logic

network M = (n; £1,£2,....f; P if forany a and b in {0,1}® such thata# b,a =y b
implies E(a) > E(b). M is said to have a Lyapunov function E(s) if it is a Lyapunov
function for M.

Then, we have the following simple but basic result.
Theorem 2. 4.

For a logic network M, the following propositions are equivalent.

(1) M is stable.

(2) M has an injective Lyapunov function.

(3) M has a Lyapunov function.

Proof.

(1) > (2) : Let M = (n; f1,f2,....fx; ¥) be a stable logic network. Consider a
directed graph Gy = (V, E) where the set of vertices V = {0,1]™, and the set of edges
EcVxVisgivenasE= {(a,b)| a=sb}. Since M is stable, there are no directed
cycles of length more than 1 in the graph Gy . Then, there is at least one vertex a
such that for no other vertices b, (b, a) € E. Define a function @y : {0,1}2 — {1,2,...,
27} as follows. First, let @y (a) = 27, and delete the vertex a together with all the
edges leaving it from Gy to obtain a graph Gy’ with (2™ - 1) vertices. This new
graph does not have directed cycles of length more than 1, either, Then, we can
continue the process until we have a completely defined injective function @py :
{0,1} - {1, 2, ..., 2"}, Thus, in general, a vertex d is deleted at i-th step and given a
number 2™ - i +1. By definition, for any distinct a and b in {0,1}", a =>37 b implies
oM (a) > @M (b). That is, @y is a Lyapunov function for M.

(2) — (3) : Self-evident.

(3) = (1) : Let M = (n; f1,f2,....fp; ¥) has a Lyapunov function E(s). For any a
and b in {0,1}% such thata # b, a=> b implies E(a) > E(b). If b 2 ¢ holds for some ¢
in {0,1)™, this means ¢ # a because the relation E(b) 2 E(c) yields E(c) # E(a). So, a
is acyclic for every a in {0,1}", and M is stable.

3. Pure Lyapunov Functions

In this section, we consider more restrictive definition of Lyapunov functions
than the one in the previous section. That is, we regard a state function as directly
guiding the transition behavior. A similar concept called strict has been defined in
(Kobuchi, 1994).

Definition 3. 1.

Let E(s) be an injective state function such that E(s) : {0,1}® — R where s =
(s1,82,...,8p) is in {0,1}" . Itis a pure Lyapunov function for a logic net M = (n;
f1,£2,....fn; ) if the following holds :

For any a and b in {0,1}™ such that whose Hamming distance equals one, we have

(a=>py b) © E(a) > E(b).

Any injective state function can be a pure Lyapunov function for some logic

network, which was first pointed out by Baldi(1988).
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Theorem 3. 2.
Let E(s) : {0,1}™ — R be any injective state function. Then it is a pure Lyapunov
function for the logic network M = (n; f1,f2,....fn; %) where
fi(s) = H( - dE(s)/dsj ) fori=1,2,...,n
such that JdE(s)/ds; =E(s|sj=1) - E(s|sj=0)and H(") is the Heaviside function.

Note that the above fj(s) is independent of s;. We call the logic network M in
Theorem 3. 2. as independent. If a logic network has a Lyapunov function, then it has
an injective Lyapunov function by Theorem 2. 4. On the other hand, any injective
state function is a pure Lyapunov function for an independent logic network by
Theorem 3. 2. The relations between these logic networks and corresponding
Lyapunov functions will be made clear in the following section.

4. Order Relations Between Logic Networks and Lyapunov Functions

We define two kinds of partial order relations over the set of logic networks and
show their equivalence. We also show that these relations relate pure and ordinary
Lyapunov functions.

4. 1. Global Relation of Logic Networks
Definition 4. 1.

Let M = (n; fq,f3,....f;; #) and L = (n; g1.89,....85 §) be two logic networks and
let S = {0, 1}™. We define a relation < on the set of logic networks as follows.

L <M < Forany aand b in S such thata # b, (a =, b) implies (a =>ps b).

Lemma4. 2.
Let L. and M be logic networks. If L < M and M is stable, then so is L.

Furthermore, L and M can have a same Lyapunov function in this case.
Proof.

For any a in S, consider another b in S such thata = b, Also consider arbitrary
cin S such thatb =y ¢. Since L < M, we havea =>p/bandb = prc. As M is
stable, a is an acyclic state of M, which means ¢ # a. Thus a is also acyclic for L and
L is stable. As to Lyapunov functions, there is one such function E(s) for M because
M is stable (by Theorem 2.4.). It is easy to see that this function E(s) is also a
Lyapunov function for L.

Lemma4. 3,

Let L be a stable logic network. Then, there is an independent logic network M
such that L < M and M has a pure Lyapunov function.
Proof.

By Theorem 2. 4., L = (n; £1,82.....8n; §) has an injective Lyapunov function E(s).
By Theorem 3. 2., this E(s) is a pure Lyapunov function for the logic network M =
(n; £1.62,....5n; P where fi(s) = H( - 0E(s)/dsj ) fori =1, 2, ..., n. We have to show
that L. < M, For any distincta and b in S, a = b implies E(a) > E(b) since E(s) isa
Lyapunov function for L. Because E(s) is a pure Lyapunov function for M, E(a) >

E(b) implies a =ps b. Thus we haveL < M,
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4. 2. Orderly Dependency
Now, another relation on the set of logic networks is introduced using an order

relation on the set of logic functions.
Definition 4. 4.
Let f(s) and g(s) be any n-variable logic functions where n is an arbitrary

positive integer. A relation £ is defined as
f<g & f(s)=1implies g(s) = 1.
We denote the corresponding strict order relation asf< gif f< gandf#g.

An n-variable logic function f(s) such that s = (1, $2...., Sn) can be expanded by a
variable sj as f(s) = p si v q5{ wherep=1f(s|sj =1)andq= f(s| si = 0) are (n - 1)-
variable logic functions.

Definition 4, 5.

Letf(s)=psj V qs; be an expansion of a logic function f(s) by a variable sj. It
is independent of sj (or s; -independent) if p = q. It is called orderly dependent on sj
ifg<p.

Definition 4. 6.
Let f(s)=psiV qsj and g(s)=usjV v5 be logic functions of n-variable s =
(s1, $2,..., sp) expanded by a variable si . Then, a partial order relation < is defined as
g(s) S f(s) & p<uandv<gq
We write g(s) <; f(s) when g(s) < f(s) and g(s) # f(s).
Property 4. 7.

If g(s) <i f(s) and f(s) is S; -independent, then g(s) is orderly dependent on Sj.
Proof.

By assumption, if f(s) is expanded by sj as psj VvV q5S;,thenp =q. If g(s) =u sj

V v, then v < q=p< u, which implies v < u as desired since p# uorv #q.
Definition 4. 8.

LetM = (n; £1.12,...,fn; 7 and L = (n; g1.82,....8; G) be two logic networks. We
define a relation < .on the set of logic networks as follows.

LEM & gj(s) Sifils) fori=1.2,...,n.

Theorem 4. 9.

Let M = (n; f1,£2,....fn; #) and L = (n; g1,89,....€n; G) be two logic networks.
Then,L <M &S LM,
Proof. (Omitted.)

Summing up the hitherto obtained results, we have
Theorem 4. 10.

1) A logic network L = (n; g1,89.....8n; @) is stable if and only if there exists an
independent higher order neural network M = (n; f1,f2,...,fn; %) such that L £ M.

2) In such case, M has a pure Lyapunov function E(s) and fj can be represented as
H( - 0E(s)/dsj) fori=1,2, ..., n.

3) L also has the same Lyapunov function E(s).
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5. Concluding Remarks

We considered stable asynchronous logic networks and clarified when and how
they have Lyapunov functions. The first point we noted is that logic networks can
be expressed as higher order neural networks. We nevertheless retained logic
function expression and tried to connect the two ways of representation.

In the logic function expression, we defined orderly dependency concept. For a
logic network M = (n; f1,f2,....,fn; #) to be stable, each function fj should be s;-
independent or orderly dependent.

We also defined two partial order relations on the set of logic networks and
showed their equivalence. The one is related with global state transitions of the
networks, and the other is defined based on the orderly dependency of constituent
logic functions. A higher order neural network with pure Lyapunov function is a
maximal element under these same order relation.

These generalized analyses will widen the applicability of logic net in learning,
associative memory, and combinatorial optimization problems as has been done for
ordinary neural networks.
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