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Abstract� In this paper we show that the loading problem for a ��node

architecture with sigmoidal activation is NP�hard if the input dimension

varies� if the classi�cation is performed with a certain accuracy� and if

the output weights are restricted�

�� Introduction

Feedforward networks are a common tool in machine learning� Only some rep�
resentative data is needed to train a network automatically such that it repro�
duces a complex input�output association� There exist theoretical guarantees
for the generalization capability ��� But in praxis the training algorithms are
sometimes very slow� especially for large input dimensions�

The loading problem is to decide if a training set can be stored by a �xed
architecture correctly� Blum and Rivest have shown the NP�completeness for
a network with � computation units� varying input dimension� and perceptron
activation ��� Dasgupta et�al� have generalized the result to the semilinear
activation ��� Usually� one deals with the sigmoidals sgd�x� or tanh�x�� Hoe��
gen has proved the NP�completeness for sgd� but binary weights ��� �S��ma has
shown the NP�hardness for a sigmoidal architecture with an additional condi�
tion which is ful�lled e�g� if the output bias is 
 ��� This last approach deals
with a realistic setting� but can neither be transformed to tanh nor be expanded
to a classi�cation with reference �� 
� In �� Vu has presented a result which
focuses on the complexity of �nding solutions with minimal squared error�

Here� we will deal with networks as a classi�cation tool� We will show
the NP�hardness of the loading problem for the sigmoidal ��node architecture
with growing input dimension if the classi�cation accuracy is at least � and
the output weights are bounded by a constant B� This result generalizes to
functions which can be approximated by a scaled or shifted sgd�

�� The loading problem

The ��node architecture computes for an input dimension n the function
f � Rn � R� f�x� � �N��x� � � N��x� � �� where �� �� � � R and the two
hidden nodes N� and N� compute the functions

N� � R
n� R� N��x� � sgd�a� �

Pn

i�� aixi� and
N� � R

n� R� N��x� � sgd�b� �
Pn

i�� bixi�
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on the input vector x � �x�� � � � � xn�� Here� a � �a�� � � � � an�� b � �b�� � � � � bn� �
R
n� a�� b� � R� and sgd�x� � ���� � e�x��
The loading problem is the following problem� Consider a pattern set

�x�� y��� � � � � �xm� ym� � Rn� f��� �g� Is it possible to �nd weights a� b� a��
b�� �� �� and � such that for the corresponding network f�xi� � 
� yi � � �i �

The loading problem with accuracy at least � and weight restric�

tion B is the loading problem as de�ned above with the additional restric�
tions� jf�xi�j � � for any xi� j�j 	 B� j�j 	 B � That is� the classi�cation is
performed at least with a �xed distance � from the classi�cation bound 
�

Finally the loading problem with accuracy �� weight restriction B�
and unbounded input dimension consists of all pattern sets with arbitrary
input dimension such that each pattern set can be classi�ed with accuracy � and
weight restriction B by a ��node network with appropriate input dimension�

�� A geometric view

Assume a ��node architecture classi�es a pattern set correctly with accuracy
� and weight restriction B� The set of parameters such that the patterns are
mapped correctly is an open set in R���n� therefore after a slight shift of the
parameters if necessary we can assume� that � �� 
� �� � �� 
� � � � �� 
� and
�� � � � �� 
� Further� we can assume that a and b are linearly independent
and � �� 
� � �� 
� We are interested in the boundary that is de�ned by

�	� � sgd�atx� a�� � � sgd�btx � b�� � � � 
 �

This is empty or forms an �n� ���dimensional manifoldM with the following
form� If x �M � then x�v �M for any v orthogonal to a and b� Consequently�
M is constant in the directions orthogonal to a and b� to describe M it is
su�cient to describe the curve that is obtained ifM is intersected with a plane
containing a and b� After a rotation� translation� and scaling we can assume
atx � a� � x� where x� is the �rst component of x� Then the curve can be
parametrized by x�� a normal vector by n�x�� � � sgd��x�� 
 a � � sgd��btx �
b�� 
 b where the term btx � b� can be substituted using �	�� De�ne  n�x�� �
n�x���jn�x��j� Considering �� � � �� � � �� and � ��� � several cases result�
Case �� All values are positive or all values are negative� M is empty�
Case �� One value is positive� the other three are negative�

Since sgd��x� � � � sgd�x� we can assume that � � 
� � 	 ��� and � 	 ���

�

�

a

b

turning point

�

�
a

ba� b�

Figure �� Classi�cations by the ��node architecture
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Dividing �	� by � we obtain � � �� � 	 ��� and � 	 ��� The curve describing
M looks like in Fig��a� especially� it is convex� as can be seen as follows� For
sgd�x�� � ���� the normal vector is  n�x�� � �a�jaj� For sgd�x�� � 
 it
is  n�x�� � �b�jbj� In general�  n�x�� � 
��x�� a � 
��x��b for appropriate
functions 
� and 
�� Assume� the curve is not convex� Then� there would
exist at least two points at the curve with identical  n� identical 
��
� and�
consequently� at least one point x� with �
��
����x�� � 
� But one can compute
�
��
����x�� � C�x�� 
 ��� � � � sgd�x����� � �� � sgd��x����� � �� � ����
with some factor C�x�� �� 
� If �
��
����x�� was 
� � � � � �� or

�		� sgd�x�� �
�� � �

���� � � ��
�

s
�� � ����� � ��� � ��� � ���

����� � � ���
�

where the term of the root is negative except for � � �� or � � ���
Case �� Exactly two values are positive�

Arguing as before we can assume � � �� � 	 ��� � � ��� and � � � 	 ���
If sgd�x�� � ���� or sgd�x�� � ��� � ���� it is  n�x�� � �a�jaj� The curve
describing M has an S�shaped form �see Fig��b� because there exists at most
one point of the curve where �
��
����x�� vanishes� This is sgd�x�� � 
�� if
�� � � � � 
� it is the solution �		� with positive sign if � � � 	 
� and the
solution �		� with negative sign if �� � � 
�
Case �� Exactly � values are positive� This is dual to case ��

�� Main theorem

Theorem � For �xed � � �
� 
�� and B � � it is NP�hard to solve the loading

problem with accuracy �� weight restriction B� and unbounded input dimension

for the ��node sigmoidal architecture�

Proof� The ��� ���set splitting problem �SSP� is the following problem�
Given a set S � fsi j �  i  ng and a set C � fcj j �  j  mg of subsets
of S where each cj contains exactly � elements� does two disjoint subsets S��
S� � S exist such that S � S� � S� and cj �� S�� cj �� S� for j � f�� � � � �mg�

The SSP is NP�complete ��� It will be reduced to the loading problem in
polynomial time showing that the loading problem is NP�hard�
Reduction� For a SSP the followingm�n��� patterns in Rn�� can be loaded
exactly if the SSP is solvable�
Positive examples� i�e� the output shall be � �� are

the points �
� � � � � 
� �� 
 � � �� 
� �� 
 � � �� 
� �� 
� � � � � 
� with an entry � at the
place i� k� and l for any cj � fsi� sk� slg in C�

the points �
� � � � � 
�� �
� � � � � 
� �� �� 
�
�
�� and �
� � � � � 
� 
� �� ��
�
��
the points �
� � � � � 
��
��� 
���� �
� � � � � 
� 
��� 
����
the points �
� � � � � 
� c� c�� �
� � � � � 
��c� c�� where c is a constant such that

c � � � ��B��� 

�
sgd����� ����B��� sgd�������B��

�
�

Negative examples� i�e� the output shall be 	 ��� are
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the points �
� � � � � 
� �� 
� � � � � 
� with an entry � at the place i  n� ��
the points �
� � � � � 
� �� �� �� 
� 
�� �
� � � � � 
������ 
���� �
� � � � � 
� ���� 
����
the points �
� � � � � 
� � � c� c�� �
� � � � � 
���� c� c� with c as above�

Assume� the SSP is solvable� Consider the weights � � � � ��� � � 
���
a � k 
 �a�� � � � � an� ����� �� ������ b � k 
 �b�� � � � � bn���� ������������ a� �
�
�� 
 k� b� � �
�� 
 k� where k is a constant�

ai �

�
� if si � S�
�� otherwise

and bi �

�
� if si � S�
�� otherwise

�

For appropriate k this solves the loading problem with accuracy � 	 
���
Assume� the loading problem is solvable� First� the cases �� �� and � are ex�
cluded� Then a solution of the SSP is constructed using the convexity of the
positive region in case �� Obviously� case � can be excluded�
Assume the classi�cation is of case �� We will consider only the last two di�
mensions� where the following problem is included� �We drop the �rst n�� co�
e�cients which are 
�� ��
��� 
���� �
��� 
���� �c� c�� ��c� c� �� � and ������ 
����
����� 
���� �� � c� c�� ���� c� c� �� �� �see Fig��a�� De�ne p� �� sgd�������B��
and p� �� sgd����� ����B��� fx jp�  atx�a�  p�g and fx jp�  btx� b� 
p�g are called the a� resp� b�relevant region� Outside� sgd�atx � a�� resp�
sgd�btx� b�� can be substituted by a constant� the di�erence is at most ����

Since the points with second component 
�� cannot be separated by one
hyperplane� one point �x� 
��� with x � ����� ���� exists inside the a� resp�
b�relevant region� If the points �c� c� and �� � c� c� were both outside the a�
relevant region then they would be separated by any hyperplane with normal
vector b which intersects the separating manifold outside the a�relevant region
�see Fig��b�� The normal vector of the manifold is approximately �a�jaj for
large resp� small btx � b�� Therefore we can �nd a hyperplane where both
points are located on the same side� Contradiction� The same argumentation
holds for ��c� c� and ��� � c� c�� Therefore the diameter of the a�relevant
region restricted to the last two dimensions is at least c � �� Consequently
a  �p� � p����c� �� � ����B� where a � j�an��� an���j�

If one of the points �c� c� and �� � c� c� and one of the points ��c� c� and
��� � c� c� is contained in the b�relevant region� it follows b  ����B� for b �
j�bn��� bn���j� This leads to a contradiction� For x� � �c� c� and x� � ��� c� c�
it is jf�x�� � f�x��j  �j�j jatx� � atx�j� �j�j jbtx� � btx�j  � �

a� b� separating

a
t
x� a� � p�

�

���

c

��� � � c��� c ����

a

manifold

b

separating
hyperplanes

Figure �� a� Classi�cation problem� b� Outside the b�relevant region
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projection

separating hyperplanes

Figure �� Classi�cation problem� projection of the classi�cation to the a�b�
plane� at least one negative point is not classi�ed correctly

If both points �c� c� and �� � c� c� or both points ��c� c� and ���� c� c� are
outside the b�relevant region� the di�erence of the values sgd�btx � b�� with
corresponding x is at most ����B�� The same contradiction results�

Assume the classi�cation is of case �� The classi�cation includes in the
dimensions n� � to n � � the problem depicted in Fig��� The negative points
are contained in a convex region� each positive point is separated by at least one
tangential hyperplane of the separating manifold M � Consider the projection
to a plane parallel to a and b� Following the convex curve which describes M
the signs of the coe�cients of a normal vector can change at most once� But
a normal vector oriented towards the positive region and separating a positive
point has necessarily the signs ������� for ��� �� 
�� ������� for �
� �� ��� and
������� for �
� 
� 
� in the dimensions n� � to n� �� Contradiction�

Solution of the SSP� The classi�cation is of case �� We can assume � � ���
� � �� and � � �� De�ne S� � fsi j ai is positive g� S� � S � S�� It is

�i� � sgd�a�� � � sgd�b�� 	 � origin is �
�ii� � sgd�a� � ai� � � sgd�b� � bi� � � point si is �
�iii� � sgd�a� � ai � aj � ak� � � sgd�b� � bi � bj � bk� 	 �

�iii� is valid for all points such that c exists with c � fsi� sj� skg�
Assume c � fsi� sj� skg exists such that all three coe�cients are positive�

Necessarily� bi� bj� bk 	 
� In the components i� j� k the classi�cation ��� 
� 
��
�
� �� 
�� �
� 
� �� �� �� and �
� 
� 
�� ��� �� �� �� � is contained� The positive
points are contained in a convex region� each negative point is separated by
at least one tangential hyperplane of the separating manifold M � We project
to a plane parallel to a and b� Following the curve which describes M � the
normal vector� oriented towards the positive region� is � �a�jaj� then the signs
of each component of the normal vector change one time� �nally it is � �b�jbj�
But a vector where the three signs in dimension i� j� and k are equal cannot
separate a negative point� further the sign in dimension i has to be negative if
si is separated� the same is valid for j and k� Contradiction�

The same argumentation shows that at least one of bi� bj � and bk is negative�
i�e� at least one of ai� aj� and ak is positive because of �i� and �ii�� �

Note� that it is not obvious if the loading problem is contained in NP� This
is due to the fact that the weights in the �rst layer and the precision that is
necessary for the computation is not limited a priori�
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Corollary � The loading problem with accuracy � � �
� 
��� and weight re�

striction B is NP�hard for any activation function � which can be approxi�

mated by the sgd activation as follows� a� b� c� d � R exist with jaj  B�� and

ja��bx� c��d� sgd�x�j 	 ����B� �x� This is valid for tanh�x� � � sgd�x����

�� Discussion

As a consequence training of a sigmoidal network can be very expensive for large
input dimensions under the reasonable assumptions that the output weights are
restricted and the classi�cation is performed with a certain accuracy�

The restrictions are necessary because otherwise the geometric con�guration
that leads to a solution of the SSP �case �� and a con�guration which should
be excluded �case �� cannot be distinguished � they di�er only slightly on a
bounded region� Further� the restrictions o�er the possibility to generalize the
result to functions that can be approximated by the sigmoidal�

Unfortunately� it is not obvious how the proof of Theorem � can be expanded
to other� even very simple activations� The main argument has been that the
manifold limits a convex set� This is not true for such simple functions like a
monotonous� piecewise linear function� Further� there exist activation functions
with some nice properties where any consistent input set can be implemented
and the loading problem is trivially solvable ��� It is not obvious if the same
holds with the additional condition concerning the accuracy and weights�

Finally� it remains unsolved if an NP�hardness result holds for architectures
containing more layers than the ��node network as formulated in ���
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