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Abstract.

Theoretical and practical aspects of Multi-Layer Perceptron (MLP) learn-
ing methods from the bayesian perspective were addressed for the first
time by David MacKay in 1991. In this framework, the learning algo-
rithm is an iterative process which alternates optimization of weights
and estimation of hyperparameters, such as weight decay parameters.
Moreover, trained MLPs that generalize better have higher “evidence”,
a probability which quantifyes how well a MLP is adapted to a problem.
This paper suggests and motivates a new methodology that computes
the evidence during learning for different MLP configurations. Such es-
timations and the confidence intervals on test set are used to rank MLP
configurations and, then, to stop learning. This learning strategy is il-
lustrated on classification problems.

1. Introduction

In the last seven years various works have demonstrated that the bayesian
paradigm can improve Multi-Layer Perceptron (MLP) learning methods. The
work presented in this paper is based upon the framework originally developed
by David MacKay [2]. Such framework is of particular interest because, con-
trary to other options, it has been successfully experimented on various real
problems.

An important practical point of MacKay’s setting is that among different
MLP models M* (i = 1,2,...), the most adapted to a given problem is cho-
sen by maximizing the conditional probability P(D|M?®, H), called “evidence
of M where H is the knowledge that we have and the assumptions we have
made about the problem before seeing data D. Two issues motivate this work
(Section 3.): (1) for real problems, evidence estimation can be difficult and in-
fluenced by numerical inaccuracy; (2) the best configuration for the parameters
(including hyperparameters) of a given MLP model is chosen using an iterative
process whose convergence towards fixed limiting values is not theoretically
demonstrated.

We suggest a new methodology to rank different MLP configurations based
on the evidence estimation (Section 4.); experiment the methodology on classi-
fication problems and discuss results (Section 5.). Comments and perspectives
conclude the paper.
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2. Background on bayesian MLPs

We assume that the weights of a given MLP form a set of k indexed elements
W = (w1, ..., wy) and that the given training data set is D = {(z1,t),..., (zn,tn)}-
The goal is to link z; and ¢; through the classical statistical model #; =
R(z;) + €;, where ¢; is an expression of the various uncertainties, e.g. noise.
The learning problem is to approximate R(x) by a function F(z, W) from the
set of non linear functions of the given MLP architecture. Typically, this sort
of learning problem is expressed as a minimization problem, that we outline in
the case of MacKay’s setting.

Using MacKay’s bayesian learning requires that some assumptions be true:
(1) the prior distributions of noise and MLP weights follow two Gaussians,
with 0 mean and standard deviations o and ow; (2) the posterior weight dis-
tribution, obtained using Bayes’ rule, is sharply peaked at some point W*; (3)
in a neighborhood of W* the peak is approximated by a Gaussian; (4) the
. additional parameters ¢ and o, also called hyperparameters, are “well deter-
mined” by the data D, in the sense that their joint posterior distribution has a
sharp peak around values o* and o},. Under such conditions, it can be shown
that the minimization problem is to choose W* that minimizes:
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Then, tuning a bayesian MLP is an iterative process which works as follows.
At step ¢, starting from weights W* and given parameters ot and ot
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b) Given W*t1, find the most probable values o**! and 0! using data D.
c) Go back to (a) now using W*t!, gt+! and oi}?.

The procedure is started by making some initial guesses for the values of ¢°
and 09, and different possibilities for W° exist. The key point of the process
is the iterative re-estimation of the hyperparameters (step (b)).

MacKay’s main result are the formulae for the values of 6* and of,. If
function (1) is written as BEp + aEw, with
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then MacKay’s formulae are
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where ), is the a'® eigenvalue of the Hessian matrix of BED, computed us-
ing weights W, in the natural basis of Ey,. Such expressions are used as
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re-estimation formulae for the above iterative process: at step t, v'*! is first
computed for current parameters W?, §* and o' and, then, new parameters
B*+! and a**! are estimated using v*** and current errors Ef and E}y.

MacKay’s second important result is an expression for the logarithm of
P(D | M, H"), the evidence of the MLP configuration with H* = {W?*, o*,0%,, H}.
The formula is quite long and we have omitted it: the important point here is
that it requires estimation of the determinant of the Hessian matrix. This term
depends on the product of the eigenvalues of the matrix, and is consequently
much more sensitive to errors than the estimation of v, which is based on the
sum of the eigenvalues.

3. Motivations for a new methodology

We advise to study issues related to the convergence of “the bayesian process”,
_ the procedure of alternating optimization of MLP weights and re-estimation
~ of MLP hyperparameters using formulae (3) every few cycles. Proof of the
following is an open problem.

Conjecture 3..1 There exists { such that, for ¢t > £, values W?, o* and o,
minimize function
1 2, 1 & 2
pre > (F(ai, W) -t)*+ P >
i=1 W=t
and maximize the evidence P(D | M, H*), being H® = {W?, 0!, 0%, H}.

In practice this conjecture, or at least the empirical and numerical stability of
the bayesian process, is taken for granted by MacKay. In fact, in his experi-
ments, MacKay chooses the weight configuration obtained after a heuristically
decided number of iterations. In other words, his idea is to iterate “many
times” and to take the last configuration.

A learning procedure always starts using random weights and, obviously, it
is not reasonable to assume that the posterior distribution on weights is sharp-
peaked around these random weights, as required by the bayesian process.
Thus we must, in practice, start the learning with some non bayesian algorithm
(such as stochastic and/or conjugate gradient) in order to first reach a “good”
weight configuration where the bayesian process can be started. Our recent
experience [3] has shown that if the bayesian process begins “too early” before
having reached a “good” weight configuration, the MLP will not overfit, but it
will never reach an acceptable solution, whilst if it begins “too late” at a point
where (having used the conjugate gradient) the MLP has begun to overfit,
the bayesian MLP will be unable to reach an acceptable solution either. In
other words, the bayesian process must start when the conjugate gradient has
found a solution that is “not too far” from its best possible configuration. It is
then possible to observe that the bayesian MLP can slightly improve the MLP
performance while not overfitting.
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4. Ranking MLP configurations using the evidence

Analysis of above points suggests that bayesian MLPs should be used with this
new methodology:

0. Use stochastic gradient descent for a initial rough search for a minimum.
. Use conjugate gradient algorithm for various iteration steps ¢4,%s,...

. For each t; start a bayesian learning process.

. At various steps of these bayesian processes, compute the MLP evidence.

> W N

. At the end of the computation, choose the configuration for which the
evidence is maximum.

The peculiarity of this methodology is in the use of the MLP evidence to rank
different MLP configurations obtained during a given bayesian learning process.
This should take to reasonable solutions even in the case of numerical instability
or when the best configuration is not the last of the bayesian process.

The evidence measures how well a MLP configuration is adapted to the
problem. Therefore, we must ascertain whether the capacity of a bayesian
MLP to have good predictive ability is a monotonic function of the evidence:
the configuration with the largest evidence is expected to give the best results
on future and unseen data. In such case, our methodology can also be used as a
practical method to stop learning. For the moment, there is no theoretical link
between predictive ability and evidence. We report the experimental results
obtained with our methodology for two classification problems.

5. Application to classification problems

The first problem is based on the “Waveforms recognition” model constructed
by Breiman et al. [1] and used to illustrate various parts of their ‘tree clas-
sification’ methodology. Though artificial, this problem is not trivial and is
frequently utilized by machine learning practitioners. It is a 3 class and 21
inputs problem. According to Breiman, the learning set is respectively made
of 100, 85 and 115 measurement vectors for classes 1, 2 and 3. Five thou-
sand test vectors have been independently generated with equal proportions
for the three classes. An analytical expression can be derived for the optimal
Bayes classifier error rate. For the test sample size of 5000 this expression gives
a recognition rate of 86%. The second problem is about medical diagnosis
applied to breast cytology, “Cancer”, from the University of Wisconsin Hos-
pitals. It is available at the UCI Repository of Machine Learning Databases
(http://www.ics.uci.edu/mlearn). It is a two class problem: benign or ma-
lignant based on cell descriptions. Each example is a real vector of size 9. There
are 699 examples in which the first 350 are used as learning set.

Table 1 shows, for a MLP architecture with 78 weights in the Waveforms
problem, the values of performances, quadratic errors Ep (on test set) and
value of log-evidence at different steps of a bayesian procedure. We chose the
fifth configuration, which has maximum logarithm of evidence (—491.67), as
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W: Performances 78.20% | 84.68% | 84.08% [ 84.38% | 84.36%
W: Quadratic Error Ep 3762 2843 2826 2830 2803
W: Log of Evidence —545.42 | —496.45 | —492.61 | —491.84 | —491.67
C:  Performances 08.85% | 98.85% | 98.56% [ 98.56% | 98.85%
C:  Quadratic Error Ep 28.42 21.83 20.82 20.66 20.21
C: Log of Evidence —-376.19 | —337.64 | —325.83 | —322.04 | —310.34

Table 1: Waveforms (W) and Cancer (C) problems: log-evidence function of
performances and quadratic errors on test set.

the “best” MLP configuration. On the other hand, the configuration with
maximum performance is the second one (84.68% vs. 84.36%). Let us examine
this point.

First at all, there is a big difference between the first column of results and

- the others, whilst the values are very close for the other columns. Consider

now the performance values of these last four columns. If we take into account
the confidence interval or uncertainty on the performances obtained on the
test set, which is 1.73% as given by the Hoeffding formula, these values may
be considered essentially equivalent. Therefore, whether we choose the last of
these four configurations, which has maximum log-evidence, or the first one,
which has maximum performance, makes no difference. The important point is
that, among the five configurations, the methodology is able to distinguish the
first from the others. This suggests that the evidence as a method in ranking
the different configurations “works”. Note also that the correlation between
evidence and quadratic error on test set is almost perfect, which suggests that
our methodology may work even better on interpolation or regression problems.

We can observe the same results on other configurations of the architectures
for the Cancer problem. Table 1 refers to a MLP with 122 weights. The
confidence interval on test set is here 6.5%.

The tables are only a synthesis of our results on evidence. Figures 1 &
2 report the empirical correlation between generalization accuracy and log-
evidence of two nets applied to the Waveform problem: the smaller net (Figure
on the left) produced the results reported in Table 1. Note that the correlation
between generalization accuracy and log-evidence is quite good for the bigger
net. Moreover, with respect to Table 1, we now have a more organic and visible
demonstration that some configurations of the best (and smaller) net violate
the desired correlation. The nature of such outcome is probably due to the
very small values that typically has the evidence, with consequent numerical
problems: in Table 1 the values of the log-evidence give values of P(D | M, H)
below the precision of the computer!

It is important to have an idea of the computational complexity of the
evidence estimation: the most complex and realistic problem on which we
experimented our methodology and the evidence estimation with reasonable
results is NASA “Satellite image problem” [3] (6 class, 36 inputs, =24 thousands
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Figure 1: Waveform problem. log- Figure 2: Waveform problem. log-
evidence vs. generalization accuracy evidence vs. generalization accuracy
for a net with 78 weights. for a net with 103 weights.

training patterns), for which a MLP containing =~ 1000 weights and 24h time
on a SPARCI10 for each evaluation of the evidence were needed.

Note finally that, in Figures 1 & 2, the log-evidence values are essentially
bigger for the MLP configurations of the smaller net (Figure on the left), and
that the performances on the test set also have this property. This result
confirms that the evidence can actually rank different MLP architectures, as
originally claimed and experimentally demonstrated by MacKay.

In conclusion, we advanced the use of a new methodology to rank MLP
configurations during learning. It is crucial, however, to have some confidence
interval estimation on the data in the test set, which allows to stop learning
when different MLP configurations with similar evidence values (possibly in-
fluenced by numerical inaccuracy) have performances that can be considered
“essentially equivalent”. We underlined that evidence estimation can be nu-
merically difficult and computational demanding, especially for practical appli-
cations. Even if results seem to be encouraging, further investigations must be
undertaken to verify the accuracy of our (any!) evidence-based methodology,
with particular care to the specific optimization algorithms used to find MLP
weights.
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