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Abstract. Feature Selection techniques usually follow some search stra-
tegy to select a suitable subset from a set of features. Most neural network
growing algorithms perform a search with Forward Selection with the ob-
jective of finding a reasonably good subset of neurons. Using this link be-
tween both fields (feature selection and neuron selection), we propose and
analyze different algorithms for the construction of neural networks based
on heuristic search strategies coming from the feature selection field. The
results of an experimental comparison to Forward Selection using both
synthetic and real data show that a much better approximation can be
achieved, though at the expense of a higher computational cost.

1 Introduction

The main objective of feature selection in inductive learning is to select the most
suitable subset from a set of features [1]. Analyzing all possible subsets is usually
unattainable and a heuristic search is often carried out in order to find a good
subset. One of these search strategies is Forward Selection, that starts with an
empty subset and adds the most salient feature at a time (as measured by some
cost function), keeping all the previously selected features in the current subset.

On the other hand, many neural network growing algorithms obtain the net-
work architecture by starting from scratch and adding neurons, usually one at
a time, until the network reaches a suitable performance (or begins to degene-
rate) [2] . Changing features into neurons, these neural network growing algo-
rithms perform a search with Forward Selection with the objective of finding a
good subset, of neurons.

This work is devoted to approximation tasks. With the objective of improv-
ing the selection of hidden neurons, we make use of this link between feature
selection and neural network growing algorithms to propose the application of
heuristic feature selection search strategies to the selection of neurons.

We illustrate this idea with Sequential Approximation with Optimal Coeffi-
cients and Interacting Frequencies (SAOCIF') [3]. This is a growing algorithm
that uses Forward Selection to guide the selection of hidden neurons. Different
selection algorithms are proposed that change the search strategy of SAOCIF
by other strategies from the feature selection field.

*This work is supported by Ministerio de Educaciéon y Ciencia, under project CGL2004-
04702-C02-02.
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Experiments are performed with Radial Basis Funcion (RBF) networks with
synthetic data and with real data from a microbiology problem. The results show
that with the same number of neurons, a better approximation than SAOCIF
is indeed achieved, though at the expense of a higher computational cost. The
choice of a search strategy will hold a tradeoff between number of neurons,
approximation and computational cost.

2 Background

2.1 Feature Selection

In order to find a reasonably good subset of features, many feature selection
methods carry out a search process. The search process has three basic elements:
a cost function which directs the search, a search strategy that decides how to
continue exploring new states and an initial state where the search will start
from. Two popular search strategies are:

PTA(l, r): Plus | and Take Away r. At every step, | features are added one
at a time (always the one that minimizes the cost function) and then r
features are removed one at a time (always the one that, after removing
it, the cost function is minimized). When | > r, it is a growing method,
and when [ < r, it is a pruning one. Forward Selection is PTA(1,0).

SFFS: Sequential Forward Floating Selection [4]. At every step, a feature is
unconditionally added and then features are removed one at a time while
the value of the cost function is better than the best value achieved until
this moment with the same number of features.

2.2 Sequential Construction of Neural Networks with SAOCIF

Consider the function computed by a two layer fully connected feed-forward
neural network [5] with m hidden neurons and one linear output, that can be
expressed as fi, () = > 1" Aihi(ws, bs, x), where A;, b; € R and usually z,w; €
RY. We divide the weights into output-layer weights \; and hidden-layer weights
w;. The biases b; can be considered as part of the hidden-layer weights.

The optimal number of hidden units, m, is not known a priori, and it has been
widely discussed in the literature. The selection of a proper number of hidden
units is the aim of constructive methods. Growing methods, for example, start
with a small number (usually zero) of hidden neurons and add one unit at a time
until a certain stopping criterion is reached (Forward Selection). One of these
growing methods is SAOCIF [3], based on the minimization of the quadratic
€error.

In order to select the new neuron, SAOCIF performs an implicit orthog-
onalization of the output vectors of the hidden units. The new hidden-layer
weights are selected taking into account their interactions with the previously
selected ones in order to minimize the sum-of-squares error (empirical risk).
The interactions are discovered by means of the optimal output-layer weights.
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In other words, a hidden-layer weight is considered better than another if the for-
mer allows a better approximation than the latter (after computing the optimal
output-layer weights of the whole network in both cases). SAOCIF allows the
candidate hidden-layer weights to come from different sources. When the can-
didate hidden-layer weights are the input points from the training set, SAOCIF
is equivalent to Orthogonal Least Squares [6].

3 Application of feature selection search strategies to the
selection of the hidden-layer weights

The main problem of Forward Selection is that once a feature has been added,
it can no longer be removed. Therefore, the solution with N features has to
include all the features from the solution with N — 1 features.

Since SAOCIF uses Forward Selection, it may choose a neuron as being very
necessary in a given moment of the training process. In a posterior moment
the contribution of that neuron might be replaced, at least partially, by other
neurons.

In this work we apply the aforementioned feature selection search strategies
(PTA(l,r) and SFFS) to the selection of hidden neurons. In the particular case
of Forward Selection, SAOCIF is obtained. Similar to the feature selection case,
selecting a better subset of neurons may improve the approximation, given the
same subset size.

Forward Selection is the only search strategy in Section 2.1 that does not need
to remove elements. Other search strategies do include the removal of elements.
In order to select the next neuron to add or remove, the implicit orthogonal-
ization performed by SAOCIF is basically followed. That is, a hidden-layer
weight is added/removed when its addition/removal leads to the best possible
approximation.

Using more complex search strategies that minimize the sum-of-squares error,
we expect two main differences of the new methods with respect to SAOCIF:

e Given the same network size, the approximation will tend to be better.
e They will be more costly, since they need to add and remove more neurons.

If confirmed, it would be worth to know how much the approximation is improved
in relation to the computational cost.

4 Experiments

4.1 Setting

The experiments are performed with PTA(1,0), PTA(2,1) and SFFS. The ob-
jective of our experiments is to check if PTA(2,1) and SFFS improve the ap-
proximation of PTA(1,0), to observe how large the improvement is (if any) and
what is the computational cost that we have to pay.
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A preprocess is carried out with the input vectors, scaling them so that each
dimension fits in the [-1,+1] range. The candidate hidden-layer weights are the
examples of the training set. RBF networks with h;(z) = exp(—||x —c¢;||?/r?) are
used, where ¢; is the RBF center (the hidden-layer weight) and r is the width.
We set r? = 0.3D, following [7], where D is the dimension of the input vectors.

We use the kin-8 and pumadyn-8 families of data sets from the DELVE
project [8]. Two versions are tested: fairly linear with moderate noise (fm) and
non-linear with moderate noise (nm). For each version, we use eight data sets,
each with 256 training data and eight input variables.

Real data from a microbiology problem, TOFPSW [9], are also tested where
the objective is tracking the origin of faecal pollution (human or animal) in
surface waters. The data set consists of 103 examples with 38 input variables.

We set the maximum number of hidden neurons to 100 for the DELVE data
sets and 50 for the TOFPSW one. When the method first tries to surpass that
number of neurons, the algorithm is stopped.

4.2 Results

Data Method Rel. error Rel. cost Req. neurons

kin-8fm PTA(2,1) 0.75 3 87

SFFS 0.67 14 79

kin-8nm PTA(2,1) 0.67 3 84

SFFS 0.61 16 77

pumadyn-8fm | PTA(2,1) 0.68 3 82

SFFS 0.62 16 75

pumadyn-8nm | PTA(2,1) 0.69 3 86

SFFS 0.58 15 76

TOFPSW PTA(2,1) 0.43 3 42

SFFS 0.43 9 41

Table 1: Error and cost relative to PTA(1,0) with 100 neurons (50 neurons for the
TOFPSW data set). The number of neurons required to achieve the same approxima-
tion as PTA(1,0) with 100 neurons (50 for TOFPSW) is also shown.

The results (average of the eight runs for the DELVE data and one run for
the TOFPSW data) are sumarized in Table 1. The column 'Rel. error’ shows the
ratio between the error of each method in the obtained 100 neuron networks (50
for the TOFPSW data) and that of PTA(1,0). The column ’Rel. cost’ shows the
ratio between the number of added plus removed neurons for each method with
respect to PTA(1,0). The column 'Req. neurons’ shows the minimum number
of neurons necessary to achieve at least the same approximation as PTA(1,0)
with 100 neurons (50 for the TOFPSW data).

Figure 1 summarizes how much the approximation error of the methods is
improved and how much the computational cost is worsened. It shows the means
of the results obtained for the 8 runs on the kin-8nm data sets. The left plot
shows, for each network size, the ratio between the quadratic errors on the
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Fig. 1: The left plot shows, for each network size (measured in number of hidden
neurons), the ratio between the quadratic errors on the training set obtained with each
method and that obtained with PTA(1,0). The right plot shows, for each network size,
the ratio between the number of added plus removed neurons and the number of added
neurons for PTA(1,0).

training set obtained with each method and that obtained with PTA(1,0). The
right plot shows, for each network size, the ratio between the number of added
plus removed neurons for the methods and the number of added neurons for
PTA(1,0).

The SFFS algorithm obtains the best approximation, followed by PTA(2,1).
The improvement over PTA(1,0) gets higher as the number of neurons grows.
The cost of SFFS, with respect to that of PTA(1,0) also grows with the number
of neurons, while the cost of PTA(2,1) remains the triple than that of PTA(1,0).

4.3 Discussion

In the experiments, as seen in Table 1, the amount of nonlinearity of the target
function does not seem to affect significantly the improvement of both methods
over PTA(1,0).

SFFS achieves the best approximation, at the expense of a higher compu-
tational cost. PTA(2,1) lies in an intermediate position between PTA(1,0) and
SFFS, both in terms of computational cost and approximation.

If the objective is to finish the training as soon as possible, though at the
expense of a worse approximation, we should choose PTA(1,0). If the objective
is to approximate as good as possible, without considering the computation
time, then the method to choose is SFF'S. In many cases, though, none of these
scenarios will take place, and the decision will not be so easy.

PTA(1,0) and PTA(2,1) have a fixed computation time. We always know
beforehand how much they will delay to achieve a solution with some given
number of neurons, while with SFFS the computation time is not fixed, and it
can delay more or less depending on the problem at hand. This is a drawback
if a maximum computation time is required.
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5 Conclusions and Future Work

We have tested some feature selection search strategies for the selection of hidden
neurons, obtaining a much better approximation than pure Forward Selection,
used in most network growing algorithms. SFFS achieves the best approxima-
tion at the expense of a much higher computational cost.

This work has focused on approximation. In many applications, neural net-
works are trained to achieve good generalization rather than good approxima-
tion. In some preliminary experiments we observed that, regarding the general-
ization performance, there is no method outperforming the others. The problem
is that the search minimizes a function (training set error), but we would like
to find the minimum of another function (expected risk), and although both
functions come from the same problem, minimizing the sum-of-squares error
may lead to overfitting. If we want to generalize well, the objective of the search
should be changed to obtain a good approximation while controlling the network
complexity in other ways than only the number of hidden neurons.

This problem can be tackled from a Bayesian point of view. The evidence is a
measure of merit of the model, so that models that do not fit the data sufficiently
well and models that overfit usually have a low evidence. Numerical evaluation of
the evidence is feasible since the models used in this work have identical form to
those used for Bayesian interpolation [10]. Therefore, the methods proposed here
can be adapted to search for a subset of neurons that maximizes the evidence.
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