ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Binary Particle Swarm Optimisation With Improved
Scaling Behaviour

Denise Gorse!

!Dept of Computer Science, University College London,
Gower Street, London WC1E 6BT, UK
D.Gorse@cs.ucl.ac.uk

Abstract. A boolean particle swarm optimisation (PSO) algorithm is presented
that builds on the strengths of earlier proposals but which by introducing a
wholly random element into the search process shows greatly improved per-
formance in higher dimensional search spaces in comparison also to the binary
PSO algorithm of Kennedy and Eberhart.

Keywords. Particle swarm, binary PSO, boolean PSO, discrete search.

1 Introduction

Since the introduction of particle swarm optimisation (PSO) [1], a population-based
search algorithm based on observations of social behaviour in birds and other animals,
there have been many proposed applications [2]. However some problems have a
discrete character and the original PSO was not suited to searching in such spaces.

A binary form of PSO was first proposed also by Kennedy and Eberhart [3]. Like
their continuous PSO this algorithm (here denoted KE BPSO) is simple in summary
and has remained popular. But as will be demonstrated it has poor scaling behaviour.
It is also possible to criticise the algorithm on the grounds that it changes the meaning
of velocity from the usual one of a rate of change of position to the probability of a
velocity component's taking on some specified value [4,5], and some of KE BPSO's
difficulties with higher dimensional search spaces may be linked to these issues.

There have since been a large number of reformulations of BPSO, though mostly
variants of the original KE proposal. Boolean PSO [5,6,7] is a more radical reformu-
lation that works entirely with binary variables and bitwise operators (AND, OR,
NOT, etc) and as such might be considered a more natural extension of the principles
of PSO to discrete problems. However these boolean algorithms too are not always
effective in higher dimensional search spaces.

It will be shown that a simple adaptation of one such boolean algorithm, presented
initially by Afshinmanesh and Marandi in [5] and with some modification in [8,9] not
only improves performance substantially, by five to eight orders of magnitude in
some cases, but also makes the new algorithm considerably more effective than the
Kennedy-Eberhart binary algorithm, still widely used in discrete search applications.

239

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

2 Continuous PSO

PSO combines learning based on each particle's own past experience (cognitive con-
tribution) and learning based on following the swarm's best performing member (so-
cial contribution). Each particle i=1..S has a velocity v; and position x;, where the
latter encodes a candidate solution as a parameter vector of length N. The equations
used to update velocity and position in continuous PSO are

v = in,t +Clrl(pi,t _Xi,r)+c2r2(gx _Xi,t) s (1a)

i,t+1

Xi,H—l = Xi,r + Vi,r+l ’ (1b)

where p;i; (‘personal best' or pbest) is the best parameter position found at time t by
particle i, g; ('global best' or gbest) is the best position found at this time by any par-
ticle, ¢; and c, are constants most often set to 2.0, and ry and r, are random numbers
generated uniformly from [0,1]. In addition w is a (usually time-decreasing) inertia
weight that controls the degree to which new search directions are pursued, and it is
also usually recommended to restrain the velocity to a maximum magnitude V. (@
value of 4 or 5 is typical) so that the search remains within useful bounds.

3 Binary PSO

In the form of discrete PSO proposed by Kennedy and Eberhart [3] the particle ve-
locities v; remain real-valued and are updated as in (1a). In order to generate an up-
dated binary position, velocity components are transformed into [0,1] by a sigmoid
limiting function sig() such that the probability the jth component of particle i's posi-
tion vector is equal to 1 is given by Prob(xj=1)=sig(v;)). As pointed out in [4] this
update rule introduces a number of potential problems: (i) velocity is no longer linked
to the likelihood of a change in position but to the probability of being in a particular
position; (ii) the algorithm has no memory in that position updates now do not direct-
ly take into account past positions; (iii) the sigmoid function can saturate and causes
bits to be stuck in either a 0 or 1 state; and (iv) the use of a time-decreasing inertia
weight instead of promoting convergence causes a drift toward a condition of maxi-
mum uncertainty (equal likelihood of position components being in bit-state 0 or 1).

The effects of (iii) and (iv), since they act oppositely, may with luck cancel, and
this may account for some of the KE algorithm's successes, but this does not stop
these features from being potential problems, and alternative BPSOs sought.

4 Boolean PSO

In a boolean PSO all variables are binary and arithmetic operators are replaced by
logical ones. In the following " will mean AND, '+' OR, and '@' the XOR operation.
For convenience binary vectors will be combined with these operators, with the un-
derstanding that the operators are to be applied to corresponding vector components.

240

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

One such proposal by Afshinamanesh and Marandi [5] has an especial simplicity,
with equations (1a, 1b) being modified to the form

vi,t+l = W'Vi,t + rl '(pi,t @ Xi,t) + rZ'(gr @ Xi,t) > (Za)

Xj,r+l = Xi,t @ vi,r (2b)
in which Prob(r;=1)=p;, Prob(r,=1)=p,, Prob(w=1)=w. Note that a large velocity (a
high probability of a vi-component being 1) is now associated with a high probability
of change in the corresponding position bit, since according to (2b) a vj=1 will cause
a corresponding position bit flip whether x;;=0 or x;=1.

Velocity is restricted here as for conventional PSO and KE BPSO, though Vi is
now the maximum number of randomly chosen bit positions allowed to change their
value, set to 5 bits out of an overall dimension BN=40 in [8] and 15 bits out of 40 in
[9]. However using these values may be inappropriate for a problem of significantly
larger dimension; experiments by the present author showed that convergence is then
both prohibitively slow and often to sub-optimal solutions. Without guidance from the
original work as to how V. should scale a linear increase in this parameter is used
here such that a maximum of 1/4 of the total number of bits (halfway between the
recommendations of [8] and [9]) are allowed to change at each iteration.

4.1 Boolean PSO With Noise

In the test problems considered by Afshinmanesh and Marandi and co-workers the
search space was relatively small (30 or 40 dimensional). It will be seen later that this
algorithm, like KE BPSO, does not scale well as the search space is enlarged, in the
experiments to be described below up to 1000 binary dimensions. It is proposed here
to add a 'pure noise' term to the velocity update rule (2a), which now becomes

Vi = b+ (- b)w'vi,t +7 '(pi,t &) Xi,t) + rz-(gr &) Xi,t) > (3)

with the position update rule (2b) as before, and where Prob(b=1)=p. 3 is an explora-
tion parameter which allows a small component of the position update rule to be unre-
lated either to a particle's current velocity or to the personal or global best positions.

5 Results

The work uses a swarm of 100 particles, the PSO algorithms run for 1000 iterations
with the inertia weight w linearly decreasing from 1.0 to 0.2, Prob(r;=1) = Prob(r,=1)
= 0.5, and with 10 runs performed under each set of experimental conditions.

5.1 Test Functions

The functional minimisation problems considered here are formulated most naturally
in N real dimensions; however these functions (members of the de Jong test set) have

241

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

also been used frequently to test the effectiveness of binary optimisation algorithms
by coding the inputs using B bits per variable such that overall the search space is
now BN-dimensional. When converted into a binary search problem in this way these
problems become challenging, especially if the number of bits per variable is large.

Table 1 lists the four functions used in this work. Of these the Sphere function f; is
the easiest while the Rosenbrock function f; is considered most difficult.

Table 1. Test functions used

Sphere: fix)= Exf Rosenbrock: f,(x) = E(]OO(xﬁ, -xD+(x,-1)°

j=1

Griewangk: fz(x)=ﬁ2x‘f—n(cos%)+l Rastrigin: ﬁ,(x)=g(x]’f—10cos(2nxj)+10)

J=1 J=1

A note on solution encoding. Binary optimisation algorithms applied to function
minimisation problems of this kind do not normally recognise a difference between
more and less significant bits, and hence the problems are made more difficult by
using a larger number of bits per variable, B, as well as a larger number of variables,
N, and a larger input domain. In order to create a challenging problem it was decided
to follow [4] in using B=20 and a domain [-50,50] for each of the N variables.

5.2 Exploring the Role of the Noise Parameter g

The boxplot representation in Figure 1 below shows the effect of the parameter 5 on
solution quality for the N=10 Rosenbrock function.

Fig. 1. Solution quality as a function of the noise parameter for the N=10, B=20 (overall
problem dimension 100) Rosenbrock discrete minimisation problem.

le+06 |
100000

10000 F 4

1000 H‘\Jj !

100

gbest after 1000 iteractions

N4

le-06 1le-05 0.0001 0.001 0.01 0.1
beta

10 | -

1

It can be seen that for small values of § (with the Afshinmanesh-Marandi algo-
rithm recovered in the limit 5—0) solution quality is significantly degraded. However
it is seen also that it is undesirable to have too large a value for this parameter. This is

242

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

an instance of the control/exploration tradeoff familiar in any search or optimisation
process that involves an element of pure randomness, the role here of a nonzero .
Usng a value of =0.01 the proposed algorithm was benchmarked for all four of
the test functions against Kennedy-Eberhart BPSO (KE BPSO) and the Afshin-
manesh-Marandi algorithm (equivalent here to using S=0). Input number N ranged
from 3 (overall problem dimension 60) to 50 (dimension 1000), with results below.

Table 2. Comparison of Kennedy-Eberhart PSO (KE) with =0.01 and 5=0.00 boolean PSOs
on the four test functions. Median gbest value after 1000 iterations is given, with the best per-
forming algorithm for each problem dimension indicated by boldface type.

N |dim |f1: Sphere f2: Rosenbrock
(BN) | KEBPSO | g=0.00 |p=0.01 |KEBPSO |p=0.00 |p=0.01

60 6.139e-8 |6.821e-9 |6.821e-9 | 1.905e+0 |2.000e+0 | 1.881e+0
5 [100 |2.568e-3 |4.893e-4 |1.137e-8 | 5.758e+0 |4.272e+0 | 3.767e+0
10200 |8.915e+0 |3.067e+0 |2.274e-8 | 3.472e+3 | 9.944e+3 | 8.956e+0
20 400 |6.547e+2 |9.794e+1 | 6.185e-7 |5.701e+6 | 3.682e+5 | 1.694e+2
50 (1000 |9.376e+3 | 1.678e+3 | 2.241e+0 | 6.823e+8 |5.272e+7 | 1.177e+3

N |dim |f3: Griewangk f4: Rastrigin
(BN) | KE BPSO | g=0.00 |B=0.01 |KEBPSO |$=0.00 |p=0.01

3 |60 |1.081e-2 |3.003e-2 |1.002e-2 |3.929e-4 |9.950e-1 | 1.353e-6
5 [100 |3.984e-2 |5.735e-2 | 9.966e-3 | 2.484e+0 | 3.109e+0 | 1.062e+0
10200 |4.350e-1 |1.870e-1 |7.654e-2 | 6.725e+1 | 2.554e+1 | 4.214e+0
20400 |1.166e+0 |7.269e-1 |1.079e-1[9.161e+2 |2.628e+2|2.919%+1
501000 | 3.344e+0 |1.400e+0 | 8.369e-2 | 9.282e+3 | 1.963e+3 | 1.655e+2

It can be seen that while the $=0.01 algorithm outperforms the others only margin-
ally for N < 5 (problem dimension < 100) for higher dimensions the improvement is
considerably more marked, and Figure 2 illustrates this trend for the most difficult of
the test functions, the Rosenbrock function, displaying boxplot data as a function of
increasing problem dimension (100 to 1000 binary dimensions).

6 Discussion

It has been demonstrated that poor scaling behaviour can be ameliorated for a boolean
PSO by a modification of the search process that introduces a 'pure noise' component.
This is somewhat similar to the use of a mutation operator in a genetic algorithm, and
the use of a mutation-like source of randomness was found to play an important role
in [10] in which KE BPSO was compared favourably with a GA for the design of
logic circuits. However the relative ease with which such a random search element
can be inserted into a boolean PSO suggests this framework may be better suited than
the Kennedy-Eberhart algorithm to such high dimensional applications.

243

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Fig. 2. Scaling behaviours for variable N, B=20 Rosenbrock problem. Boxes have been offset
slightly to improve readability; experiments were carried out for N=5,10,20,30,40,50.

le+09 | a1

le+08 —_— 7
e+08 + P - 7—/’;%:
le+07 -~ _—&

+06 |]
ler06 beta=0.01 C——

beta=0.00 =3

100000 | KE PSO mmmmm |

10000 F

1000 1 i“‘v_ng____il 4{‘L

100

gbest after 1000 iteractions

200 400 600 800 1000
overall problem dimension

References

1. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE International Confer-
ence on Neural Networks, pp. 1942—1948. IEEE Press, New York (1995)

2. Banks, A., Vincent, J., Anyakoha, C.: An Review of Particle Swarm Optimization. Part II:
Hybridisation, Combinatorial, Multicriteria and Constrained Optimization, and Indicative
Applications. Natural Computing 7, 109—124 (2008)

3. Kennedy, J., Eberhart, R.C.: A Discrete Binary Version of the Particle Swarm Algorithm.
In: IEEE International Conference on Systems, Man and Cybernetics, pp. 4101—4108.
IEEE Press, New York (1997)

4. Khaneser, M.A., Teshnehlab, M., Shoorehdeli, M.A.: A Novel Binary Particle Swarm Op-
timization. In: 15th Mediterranean Conf. on Control and Automation, pp. 1—6 (2007)

5. Afshinmanesh, F., Marandi, A., Rahimi-Khan, A.: A Novel Binary Particle Swarm Opti-
mization Using Artificial Immune System. In: EUROCON 2005, pp. 217—220. |IEEE
Press, New York (2005)

6. Xing-Chen, H., Zheng, Q., Lei, T., Li-Ping, S.: Learning Bayesian Network Structures
with Discrete Particle Swarm Optimization Algorithm. In: FOCI 2007, pp. 47—52. IEEE
Press, New York (2007)

7. Zaharis, Z.D., Goudos, S.K., Yioultsis, T.V.: Application of Boolean PSO with Adaptive
Velocity Mutation to the Design of Optimal Linear Antenna Arrays Excited by Uniform-
Amplitude Current Distribution. J. Electromag. Waves and Appl. 25, 1422—1436 (2011)

8. Marandi, A., Afshinmanesh, F., Shahabadi, M., Bahrami, F.: Boolean Particle Swarm Op-
timization and Its Application to the Design of a Dual-Band Dual-Polarized Planar Anten-
na. In: 2006 IEEE Congress on Evolutionary Computation, pp. 3212—3218. IEEE Press,
New York (2006)

9. Afshinmanesh, F., Marandi, A., Shahabadi, M.: Design of a Single-Feed Dual-Band Dual-
Polarized Printed Microstrip Antenna Using a Boolean Particle Swarm Optimization. IEEE
Trans. Antennas and Propagation 56, 1845—1852 (2008)

10. Coello Coello, C.A., Hernandez Luna, E., Hernandez Aguirre, A.: Use of Particle Swarm
Optimization to Design Combinational Logic Circuits. In: Tirrell, A.M., Haddow, P.C.,
Torresen, J. (eds.) ICES 2003. LNCS vol. 2606, pp.398—409. Springer, Heidelberg (2003)

244

