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Abstract. In the present era of personalized customer services and rec-
ommender systems, predicting the preferences of an individual over a set
of items indexed by JnK = {1, . . . , n}, n ≥ 1, based on its characteristics,
modelled as a r.v. X say, is an ubiquitous issue. Though easy to state,
this predictive problem referered to as ranking median regression (RMR
in short) is very difficult to solve in practice. The major challenge lies in
the fact that, here, the (discrete) output space is the symmetric group Sn,
composed of all permutations of JnK, of explosive cardinality n!, and which
is not a subset of a vector space. It is thus far from straightforward to
build (non parametric) predictive rules taking their values in Sn, except
by means of ranking aggregation techniques implemented at a local level,
as proposed in [1] or [2]. However, such local learning techniques exhibit
high instability and it is the main goal of this paper to investigate to which
extent Kemeny ranking aggregation of randomized RMR rules may rem-
edy this drawback. Beyond a theoretical analysis establishing its validity,
the relevance of this novel ensemble learning technique is supported by
experimental results.

1 Introduction

In an increasing number of modern applications, users are invited to declare their
individual characteristics (e.g. socio-demographic features), taking the form of a
r.v. X valued in a an input space X ⊂ Rd say, and may express their preferences
over a set of numbered services/products JnK = {1, . . . , n}. In this context,
the goal pursued is to learn from historical data how to predict the preferences
of any user based on her characteristics X. In the simplest formulation, the
prediction takes the form of a permutation s(X) on JnK, mapping any item i
to its rank s(X)(i) on her preference list. Denoting by Σ the permutation that
truly reflects the preferences of a user with characteristics X, the performance of
any predictive rule, i.e. any measurable function s : X → Sn, can be measured
by the expected Kendall τ distance between s(X) and Σ

R(s) = E [dτ (s(X),Σ)] , (1)

where the expectation is taken over the (unknown) distribution of the pair (X,Σ)
and dτ (σ, σ′) =

∑
i<j I{(σ(j) − σ(i)) · (σ′(j) − σ′(i)) < 0} for all (σ, σ′) ∈ S2

n,
denoting by I{E} the indicator function of any event E . Stated this way, the
objective is to build a mapping s that minimizes (1) and one may easily show
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with a straightforward conditioning argument that the optimal predictors are the
rules that maps any point X in the input space to any (Kemeny) ranking median
of PX , Σ’s conditional distribution given X. Recall that a Kemeny median of a
probability distribution P on Sn is any solution σ∗P of the optimization problem

min
σ∈Sn

LP (σ) (2)

where LP (σ) = EΣ∼P [dτ (σ,Σ)]. For this reason, the predictive problem formu-
lated above is referred to as ranking median regression (RMR in abbreviated
form). A theoretical analysis of the RMR problem, including a description of
the set of optimal rules and a study of the generalization capacity of empirical
risk minimizers (i.e. minimizers of a statistical version of (1)) over classes of
mappings s : X → Sn of controlled complexity, when learning is based on i.i.d.
copies of the pair (X,Σ), has been carried out in [2]. Regarding the problem of
minimizing (1), attention should be paid to the fact that, in contrast to usual
(median/quantile) regression, the set S of predictive ranking rules is not a vector
space, which makes the design of practical optimization strategies challenging
and the implementation of certain methods, based on (forward stagewise) addi-
tive modelling for instance, unfeasible (unless the constraint that predictive rules
take their values in Sn is relaxed, see [3] or [4]). For this reason, a recent practi-
cal approach for ranking median regression relies on the concept of local learning
and permits to derive practical procedures for building piecewise constant rank-
ing rules from efficient (approximate) Kemeny aggregation, when implemented
at a local level, nearest-neighbor techniques or decision trees typically, see e.g.
[1], [2] or Chapter 10 in [5]. However, such methods exhibit high instability in
practice, in the sense that the rules they produce can be much affected by small
changes in the training data. It is the goal of this paper to investigate the en-
semble learning approach in this original context and show that (approximate)
Kemeny ranking aggregation again, when applied to bootstrap versions of the
training sample, may remedy this severe drawback. A theoretical result stating
the consistency is preserved under aggregation is proved and empirical evidence
of the gain in stability is provided by numerical experiments.

The paper is structured as follows. In section 2, basic notions related to
Kemeny aggregation and ranking median regression are briefly recalled. The
bootstrap Kemeneny aggregating technique is presented and analyzed in section
3. Experimental results are displayed in section 4.

2 Background and Preliminaries

A few concepts involved in the description of the ensemble learning methods we
promote here and in its analysis in the subsequent section are summarized below.

Probabilistic framework for Kemeny aggregation. Whereas problem (2)
is NP-hard in general, exact solutions, referred to as Kemeny medians, can be
explicited when the pairwise probabilities pi,j = P{Σ(i) < Σ(j)}, 1 ≤ i 6= j ≤ n,
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fulfill the following property, referred to as stochastic transitivity : ∀(i, j, k) ∈
JnK3 : pi,j ≥ 1/2 and pj,k ≥ 1/2 ⇒ pi,k ≥ 1/2. If, in addition, none of the
pairwise probabilities is equal to 1/2 (pi,j 6= 1/2 for all i < j), distribution P is
said to be strictly stochastically transitive. When stochastic transitivity holds
true, the set of Kemeny medians is the set {σ ∈ Sn : (pi,j − 1/2)(σ(j)−σ(i)) >
0 for all i < j s.t. pi,j 6= 1/2}, and, if the strict version of stochastic transitivity
is fulfilled, the Kemeny median is unique and given by the Copeland ranking:
σ∗P (i) = 1 +

∑
k 6=i I{pi,k < 1/2} for 1 ≤ i ≤ n (see Theorem 5 in [6]). The

set of strictly stochastically transitive distributions on Sn is denoted by T . As-
sume that we observe i.i.d. copies Σ1, . . . ,ΣN of a generic r.v. Σ ∼ P and
let P̂N = (1/N)

∑N
i=1 δΣi , where δx denotes the Dirac mass at any point x.

Suppose that P ∈ T and satisfies the low-noise condition NA(h) for a given
h > 0: mini<j |pi,j − 1/2| ≥ h. It is also shown in [6] that under the for-

mer hypotheses the empirical distribution P̂N ∈ T as well, with overwhelming
probability, and that the expectation of the excess of risk of empirical Kemeny
medians (denoted by σ∗

P̂N
) decays at an exponential rate, see Proposition 14

therein. In this case, the nearly optimal solution σ∗
P̂N

can be made explicit

and straightforwardly computed based on the empirical pairwise probabilities
p̂i,j = (1/N)

∑N
k=1 I{Σk(i) < Σk(j)}, i < j. Otherwise, solving the NP-hard

problem minσ∈Sn
LP̂N

(σ) is required to get an empirical Kemeny median, refer
also to [7] and the references therein for a description of methods dedicated to
approximate Kemeny median computation. However, as can be seen by examin-
ing Proposition 14’s proof in [6], the exponential rate bound holds true for any
candidate σ̃N in Sn that coincides with σ∗

P̂N
when the empirical distribution lies

in T and takes arbitrary values in Sn otherwise.

Ranking median regression. As, for all s ∈ S, R(s) = EX∼µ[LPX
(s(X))], the

optimal RMR rules s are those such that s(X) is a median of PX with probability
one and the minimum risk is R∗ = EX∼µ[L∗PX

], where L∗P denotes the minimum
of (2) for any distribution P . In the case where PX is strictly stochastically
transitive with probability one, the optimal RMR rule is µ-almost surely unique,
i.e. we µ-a.s. have s∗(X) = σ∗PX

. Statistical learning being based on a finite
sample (X1, Σ1) . . . , (X1, ΣN ) of independent copies of the pair (X, Σ),
nearly optimal RMR rules cannot be built by trying to statistically recover a
Kemeny median of Px for each possible input point x, except when X is of finite
cardinality, small compared to N . Nevertheless, under the additional assumption
that the pairwise probabilities pi,j(x), related to the conditional distribution
Px, are Lipschitz, local learning techniques based on the solving of a few well-
chosen Kemeny consensus problems have been proved to be consistent1, nearest
neighbor and decision tree methods namely. However, these methods exhibit
high instability in practice. In the spirit of ensemble learning methods, it is
proposed in the next section to apply Kemeny aggregation again, to randomized

1A sequence of RMR rules sN is said to be consistent if R(sN ) → R∗ in probability, as
N → ∞.
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versions of such RMR rules this time, in order to increase stability.

3 Aggregation of Ranking Median Regression Rules

We now investigate RMR rules that compute their predictions by aggregating
those of randomized RMR rules. Let Z be a r.v. defined on the same prob-
ability space as (X,Σ), valued in a measurable space Z say, describing the
randomization mechanism. A randomized RMR algorithm is then any func-
tion S :

⋃
N≥1(X × Sn)N × Z → S that maps any pair (z,DN ) to a RMR

rule S(., z,DN ). Given the training sample DN , its risk is R(S(., .,DN )) =
E(X,Σ,Z)[dτ (Σ, S(X,Z,DN ))]. Given any RMR algorithm and any training set
DN , one may compute an aggregated rule as follows.

Kemeny Aggregated RMR rule

Inputs. Training dataset DN = {(X1,Σ1), . . . , (XN ,ΣN )}. RMR
randomized algorithm S, randomization mechanism Z, query point x ∈
X . Number B ≥ 1 of randomized RMR rules involved in the consensus.

1. (Randomization.) Conditioned upon DN , draw independent copies
Z1, . . . , ZB of the r.v. S and compute the individual predictions

S(x, Z1,Dn), . . . , S(x, ZB ,Dn).

2. (Kemeny consensus.) Compute the empirical distribution on Sn

PB(x) =
1

B

B∑
b=1

δS(x,Zb,Dn)

and output a Kemeny consensus (or an approximate median):

s̄B(x) ∈ argmin
σ∈Sn

LPB(x).

The result stated below shows that, provided that PX fulfills the strict
stochastic transitivity property and that the pi,j(X)’s satisfy the noise condi-
tion NA(h) for some h > 0 with probability one (we recall incidentally that it
is shown in [2] that fast learning rates are attained by empirical risk minimiz-
ers in this case, see Proposition 7 therein), consistency is preserved by Kemeny
aggregation, as well as the learning rate.

Theorem 1. Let h > 0. Assume that the sequence of RMR rules (S(., Z,DN ))N≥1

is consistent for a certain distribution of (X,Σ). Suppose also that PX is
strictly stochastically transitive and satisfies condition NA(h) with probability
one. Then, for any B ≥ 1, any Kemeny aggregated RMR rule s̄B is consistent
as well and its learning rate is at least that of S(., Z,DN ).
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Proof. Recall the following formula for the risk excess: ∀s ∈ S,

R(s)−R∗ =
∑
i<j

EX [|pi,j(X)−1/2|I{(s(X)(j)−s(X)(i))(σ∗PX
(j)−σ∗PX

(i)) < 0}]

≤ EX [dτ (s(X), σ∗PX
)] ≤ (R(s)−R∗)/h,

see section 3 in [2]. In addition, the definition of the Kemeny median combined
with triangular inequality implies that we a.s. have:

Bdτ (s̄B(X), σ∗PX
) ≤

B∑
b=1

dτ (s̄B(X), S(X,Zb,DN ))+
B∑
b=1

dτ (S(X,Zb,DN ), σ∗PX
)

≤ 2
B∑
b=1

dτ (S(X,Zb,DN ), σ∗PX
).

Combined with the formula/bound above, we obtain that

R(s̄B)−R∗ ≤ E[dτ (s̄B , σ
∗
PX

)] ≤ 2

B

B∑
b=1

EX [dτ (S(X,Zb,DN ), σ∗PX
)]

≤ (2/h)
1

B

B∑
b=1

(R(S(., Zb,DN ))−R∗).

The proof is then immediate.

4 Experimental Results

For illustration purpose, experimental results based on simulated data are dis-
played. Datasets of full rankings on n items are generated according to p=2 ex-
planatory variables. We carried out several experiments by varying the number
of items (n = 3, 5, 8) and the ”level of noise” of the distribution of permutations.
For a given setting, one considers a fixed partition on the feature space, so that
on each cell, the rankings/preferences are drawn from a certain Mallows distri-
bution centered around a permutation with a fixed dispersion parameter φ. We
recall that the greater φ, the spikiest the distribution (so closest to piecewise
constant and less noisy in this sense). In each trial, the dataset of N = 1000
samples is divided into a training set (70%) and a test set (30%). We compare
the results of (a randomized variant of) the CRIT algorithm (refer to [6] for
a description of this decision tree algorithm) vs the aggregated version: in our
case, the randomization is a boostrap procedure. Concerning the CRIT algo-
rithm, since the true partition is known and can be recovered by means of a
tree-structured recursive partitioning of depth 3, the maximum depth is set to
3 and the minimum size in a leaf is set to the number of samples in the training
set divided by 10. For each configuration (number of items n and distribution
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Level of Noise
Number of items

n=3 n=5 n=8

φ = 2
0.534 +/ - 0.167 1.454 +/ - 0.427 3.349 +/ - 0.952
0.385 +/ - 0.085* 1.001 +/ - 0.232* 2.678 +/ - 0.615*
0.379 +/ - 0.057** 0.961 +/ - 0.218** 2.281 +/ - 0.589**

φ = 1
0.875 +/ - 0.108 2.346 +/ - 0.269 5.638+/ - 1.688
0.807+/ - 0.061* 2.064 +/ - 0.130 * 4.499 +/ - 0.574*

0.756 +/ - 0.063** 2.011 +/ - 0.110** 4.061 +/ - 0.259**

Table 1: Empirical risk averaged on 50 trials on simulated data.

of the dataset parameterized by Φ), the empirical risk, denoted as R̂N (s), is av-
eraged over 50 replications of the experiment. Results of the aggregated version
of the (randomized) CRIT algorithm (one star * indicates the aggregate over 10
models, two stars over 30 models **) and of the CRIT algorithm (without stars)
in the various configurations are provided in Table 1. In practice, for n = 8, the
outputs of the randomized algorithms are aggregated with the Copeland pro-
cedure so that the running time remains reasonable. The results show notably
that the noisier the data (smaller φ) and the larger the number of items n to
be ranked, the more difficult the problem and the higher the risk. In a nutshell,
and as confirmed by additional experiments, the results show that aggregating
the randomized rules globally improves the average performance and reduces the
standard deviation of the risk.
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