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Abstract. Deep Learning is one of the latest approaches in the field of artificial 

neural networks. Since they were first proposed, Deep Learning models have 

obtained state-of-art results in some problems related to classification and pattern 

recognition. However, such models have been little used in time series forecasting. 

This work aims to investigate the use of some of these architectures in this kind of 

problem. Another contribution is the use of one Evolutionary Algorithm to optimize 

the hyperparameters of these models. The advantage of the proposed method is 

shown on two artificial time series datasets and one electricity load demand dataset. 

1 Introduction 

A time series is an ordered sequence of data points, usually measured in uniform time 

intervals. An important property of time series is that data observations are 

interdependent and, thus, it is essential to maintain the order in which the data were 

generated. Time series forecasting attempts to understand the underlying context of the 

data points through the use of a model to forecast future values based on known past 

values [1]. Analysis of time series data has been the subject of active research for 

decades. Nowadays many researchers questioned the efficiency of statistical techniques 

in comparison with machine learning methods. Artificial Neural Networks (ANNs) 

have proved to be particularly good at capturing complex non-linear characteristics of 

time series, being widely studied at literature [2, 3]. However, more complex, high-

dimensional, and noisy real-world time-series data make using shallow networks 

almost infeasible since the dynamics are either too complex or unknown. Deep 

Learning (DL) refers broadly to models that derive meaning out of data by using a 

hierarchy of multiple layers that progressively extracts higher-level features that could 

be more relevant for the final forecasting task [4]. DL models, that were originally used 

in classification and pattern recognition problems, started to be applied in various time 

series forecasting tasks [5, 6]. However, there are still no conclusive results about the 

role of pre-training on this model and the relationship between architecture and the 

dimensionality of the data. 

 A common trait in Machine Learning models is that they are parameterized by a 

set of hyperparameters, which can have wildly varying effects on the complexity and 

performance of the resulting model. The best set of hyperparameters is commonly 

defined manually by an “educated guess” or by applying a grid or random search over 

predefined search space [7]. Since the hyperparameter space is in general large and 

evaluating the objective function (i.e. the performance of the model with a given set of 

hyperparameters) is computationally expensive, the need of designing smarter methods 

for determining the hyperparameters is especially important for increasingly complex 
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architectures. Evolutionary Algorithms have been shown very efficient in solving this 

challenging optimization problem [8, 9]. 

 In the context of time series forecasting, this work aims to provide a comparison 

of DL algorithms when applied on Time Series forecasting problems. Moreover, we 

tackle the problem of the automated hyperparameter selection using the Covariance 

Matrix Adaptation Evolution Strategy (CMAES) [10] algorithm. A comparative study 

of the performance of the proposed approach is conducted using synthetic and real data. 

The broader goal of this work is to further generate insights on how DL models perform 

on time series forecasting problems and how suited CMAES is for optimizing models 

with large number of hyperparameter. 

 The rest of the article is organized as follows. Next section presents basic concepts 

and principles related to Deep Learning algorithm and CMAES. Section 3 introduces 

the proposed methodology. The experimental results are presented in Section 4. Finally, 

the conclusions are drawn in Section 5. 

2 Background 

2.1 Deep Learning Algorithms 

2.1.1 Stacked Autoencoder 

Autoencoder (AE) [11] is an algorithm that learns an approximation to the identity 

function, so that it is trained to minimize the discrepancy between the input data and its 

reconstruction. However, by placing constraints on the network it can reveal interesting 

structure about the data. An example is changing the training reconstruction criterion 

for learning to clean partially corrupted input (i.e. with noise), or in short denoising. 

This leads to a variant of the basic AE called Denoising Autoencoder (DAE) [12]. 

 Since Autoencoders are automatic features extractors, they can be stacked to 

create a deep structure to increase the level of abstraction of learned features. Thus, a 

Stacked Autoencoder (SAE) [13] is a neural network consisting of multiple layers of 

AEs. In this case, the network is pre-trained in a greedy layer-wise fashion, i.e. each 

layer is treated as a shallow AE, generating latent representations of the input data. 

These features are then used as input for the subsequent layers before the full network 

is fine-tuned using standard supervised learning algorithm. 

2.1.2 Long Short-Term Memory Network (LSTM) 

Multilayer Perceptron (MLP) architecture assumes that all inputs and outputs are 

independent of each other. Therefore, in order for a MLP to model a time series, it is 

necessary to include some temporal information in the input data. Recurrent Neural 

Networks (RNNs) are neural networks specifically designed to solve this problem, 

making use of a recurrent connection in every unit that feed the activation of a neuron 

back to itself [14]. 

 In some cases, RNNs are hard to train properly because the gradient of some of 

the weights starts to become too small or too large if the network is unfolded for too 

many time steps. These issues are called the vanishing or exploding gradients problems. 

Long Short-Term Memory (LSTM) [15] networks aim to solve these problems by using 

memory cells, instead of recurrent units, to store and output information. The behavior 
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of each memory cell is defined by components called gates. Depending on the states of 

these gates, LSTM can represent long-term or short-term dependency of sequential 

data. 

2.2 Covariance Matrix Adaptation Evolution Strategy (CMAES) 

The Covariance Matrix Adaptation Evolution Strategy (CMAES) [10] is an 

Evolutionary Algorithm for difficult non-linear non-convex derivative-free 

optimization problems in continuous domain. CMAES is considered as state-of-the-art 

and one of the most powerful EAs for real-valued optimization. 

 In CMAES, a covariance matrix describing correlations between decision 

variables is learned and adapted during the search to maximize the likelihood of 

generating successful solutions.  The state of CMAES is given by the parameters 𝑚 ∈
ℝ𝑑, 𝜎>0 and 𝐶 ∈ ℝ𝑑𝑥𝑑 of its multivariate normal search distribution 𝑁(𝑚, 𝜎2𝐶). 

CMAES is an iterative algorithm, that, in each of its iterations, samples λ candidate 

solutions from a multivariate normal distribution, evaluates these and then adjusts the 

sampling distribution used for the next iteration. Here we apply what can be considered 

a baseline version, featuring non-elitist (𝜇, 𝜆) selection and cumulative step-size 

adaptation (CSA). All tuning constants are set to their default values [16]. 

3 Methodology 

Data are divided into three sets: training set, validation set and testing set. The 

forecasting models are generated using the training data, but the error is calculated for 

the validation set. Training is performed up to the moment when the error for validation 

set starts to increase; this is a regularization technique called early stopping. In order to 

evaluate any overfitting and generalization issues, the performance on unseen data (i.e. 

test data) is also considered during model comparison. 

 The DL models were evaluated using two synthetic series and one real data series. 

The synthetic series were generated using the Mackey-Glass [17] and Lorenz Attractor 

System [18] functions. The Mackey-Glass dataset is comprised of 5000 data points, and 

the Lorenz System dataset contains 8000 data points from the 𝑥 component of the 

equation. For these two datasets, the testing set represents the last 20% points. The real 

dataset consists of hourly electricity load data obtained from the 2017 Global Energy 

Forecasting Competition (GEFCom 2017) [19]. The training set ranges from 04 January 

2015 to 30 November 2016, and the testing set ranges from 01 December 2016 to 31 

December 2016. The data was normalized calculating the hourly log return.  

 Across all experiments a fixed parametrization for the internals parameters of 

CMAES was used. The population size (𝜆) is set to 24. The termination criteria are 

defined by a maximum number of generations (𝑔𝑚𝑎𝑥 = 150) and by a minimum fitness 

function target that depends on the dataset. MSE over the validation set is used as fitness 

function. 

 A 5-fold rolling window cross-validation (CV) [20] is performed using the 

training and validation set combined in order to access the performance of each optimal 

model found by CMAES. The forecast accuracy is computed by averaging over the 5 

test sets. Finally, it is performed a one-step-ahead prediction for the testing set in order 

to estimate the performance in unseen data. Four evaluation measures are used in this 
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study: RMSE, MSE, MAE, and the Coefficient of Determination (𝑅2). The first three 

metrics are estimates of variance of residuals, or non-fit, in the population; while 𝑅2 is 

a measure of how well the regression line represents the data [21]. 

4 Experimental Results 

In the first case of study, the proposed approach is evaluated using the Mackey-Glass 

dataset. Table 1 shows the mean and standard deviation of the training performance 

obtained from the CV process. By analyzing this table, is possible to state that LSTM 

obtained the best performance taking into consideration all the performance metrics and 

also proved to be the most stable model (i.e. smallest CV standard deviations). LSTM 

also outperformed all other models in unseen data, as shown in Table 2 that presents 

the results for the testing set. 

 

 MLP SAE SDAE LSTM 

𝑅2 

MSE 

RMSE 

MAE 

0.9980 ± 8.8e-4 

9.3e-5 ± 3.8e-5 

9.4e-3 ± 1.8e-3 

7.8e-3 ± 1.2e-3 

0.9972 ± 1.2e-3 

1.2e-4 ± 5.7e-5 

1.1e-2 ± 2.5e-3 

9.2e-3 ± 2.2e-3 

0.9979 ±4.9e-4 

9.8e-5 ± 2.3e-5 

9.8e-3 ± 1.7e-3 

8.1e-3 ± 9.7e-4 

0.9987 ± 4.8e-4 

5.9e-5 ± 2.2e-5 

7.5e-3 ± 1.4e-3 

6.2e-3 ± 1.1e-3 

Table 1: CV results for Mackey-Glass training dataset. 

 MLP SAE SDAE LSTM 

𝑅2 

MSE 

RMSE 

MAE 

0.9988 

5.4e-5 

7.3e-3 

5.9e-3 

0.9983 

7.9e-5 

8.9e-3 

7.2e-3 

0.9988 

5.6e-5 

7.4e-3 

6.1e-3 

0.9995 

2.2e-5 

4.7e-3 

3.9e-3 

Table 2: Forecasting performances for Mackey-Glass test set. 

 In the second numerical example, the models are tested using the Lorenz System 

dataset. The standard MLP outperformed all the other models and presented the 

smallest standard deviations values as shown in Table 3. Moreover, as can be seen in 

Table 4, MLP also presented the best overall forecasting performance over the test set. 

SAE achieved a very similar performance. Furthermore, differently from the training 

results, LSTM presented the worst performance in the test set, which may indicate 

overfitting. 

 

 MLP SAE SDAE LSTM 

𝑅2 

MSE 

RMSE 

MAE 

0.9996 ± 1.5e-4 

1.5e-5 ± 7.4e-6 

3.8e-3 ± 1.0e-3 

2.8e-3 ± 8.6e-4 

0.9934 ± 6.8e-3 

2.8e-4 ± 3.0e-4 

1.3e-2 ± 9.5e-3 

1.2e-2 ± 9.4e-3 

0.9985 ± 1.0e-3 

5.6e-5 ± 4.1e-5 

7.0e-3 ± 2.5e-3 

5.4e-3 ± 2.6e-3 

0.9994 ± 3.0e-4 

2.4e-5 ± 1.4e-5 

4.7e-3 ± 1.3e-3 

3.3e-3 ± 9.2e-4 

Table 3: CV results for Lorenz System training dataset. 
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 MLP SAE SDAE LSTM 

𝑅2 

MSE 

RMSE 

MAE 

0.9997 

9.1e-6 

3.0e-3 

2.3e-3 

0.9997 

1.0e-5 

3.2e-3 

2.2e-3 

0.9992 

3.2e-5 

5.7e-3 

4.9e-3 

0.9988 

4.9e-5 

7.0e-3 

5.7e-3 

Table 4: Forecasting performances for Lorenz System test set. 

 The third use case involves the hourly electricity load data obtained from 

GEFCOM 2017. As can be seen in Table 5, LSTM achieved the best average 

performance across all the four metrics. Regarding the generalization performance, as 

shown in Table 6, LSTM also outperformed all other models on the test set. 

 

 MLP SAE SDAE LSTM 

𝑅2 

MSE 

RMSE 

MAE 

0.9512 ± 6.0e-3 

1.3e-4 ± 1.3e-5 

1.1e-2 ± 6.0e-4 

8.1e-3 ± 2.8e-4 

0.8949 ± 2.6e-2 

2.8e-4 ± 8.0e-5 

1.6e-2 ± 2.2e-3 

1.2e-2 ± 2.3e-3 

0.9508 ± 9.4e-3 

1.3e-4 ± 2.5e-5 

1.1e-2 ± 1.0e-3 

8.3e-3 ± 7.2e-4 

0.9553 ± 1.6e-2 

1.1e-4 ± 3.7e-5 

1.0e-2 ± 1.7e-3 

7.9e-3 ± 1.4e-3 

Table 5: CV results for the hourly energy demand training dataset. 

 MLP SAE SDAE LSTM 

𝑅2 

MSE 

RMSE 

MAE 

0.9508 

1.1e-4 

1.0e-2 

8.6e-3 

0.9162 

2.0e-4 

1.4e-2 

1.0e-2 

0.9512 

1.1e-4 

1.0e-2 

7.6e-3 

0.9724 

6.7e-5 

8.1e-3 

5.8e-3 

Table 6: Forecasting performances for the hourly energy demand test set. 

5 Conclusions 

This work sought to investigate the effectiveness of a hybrid approach based on Deep 

Learning and Evolutionary Algorithm as a time series forecasting method. Three 

different deep learning models have been selected and tested: SAE, SDAE, and LSTM. 

A standard MLP is used as baseline. Furthermore, in the proposed methodology, the 

CMAES algorithm is used for hyperparameter optimization. 

 Through the experiments and the analysis of the results, it was found that all 

proposed DL methods presented relevant results and obtained significantly good 

performance on all studied cases. LSTM presented the best performance in both 

datasets with seasonal components (i.e., Mackey-Glass and hourly energy demand) and 

obtained relevant results on the Lorenz System set, proving to be the model best suited 

for learning temporal dynamics. As explained before, models that apply unsupervised 

pre-training are not able to capture very well the time dependency in the data. This can 

explain why both SAE and SDAE obtained poor results on all test cases. The results 

also revealed that CMAES effectively traverses the solution space and delivers 

consistent and high-quality results. Therefore, it has been concluded that augmenting 
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minimal deep neural network and optimizing them using Evolutionary Algorithm are a 

promising alternative for time series forecasting problems. 
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