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Abstract. The analysis of spatial dissimilarities across cities often relies
on pre-defined areal units, leading to problems of scale, interpretability and
cross-comparisons. Furthermore, traditional measures of dissimilarities
tend to be single-number indices that fail to capture the complexity of
segregation patterns. We present in this paper a method that allows one
to extract and analyze information on all scales, at every point in the
city, through a stochastic sequential aggregation procedure based on high-
resolution data. This method provides insightful visual representations, as
well as mathematical characterizations of segregation phenomena.

1 Introduction

Geographical maps of local densities of group populations may exhibit spatial
patterns, but often these are blurred by the sheer variety of details when the
resolution is high. Indices have been devised to try and capture the details of
any regularity emerging in the spatial distributions [1]. The (numerous) existing
indices may be classified in at least two categories [2, 3]. On the one hand, zone-
based indices such as the dissimilarity index [4, 5, 6], the proximity index [7]
or the concentration profile [8] work at fixed scales. They are all liable to the
Modifiable Areal Unit Problem (MAUP) [9]. On the other hand, surface-based
measures [10, 11] use a continuous population density surface to circumvent the
MAUP. But data most often comes as already aggregated units, so these indices
usually require refined statistical interpolation techniques. Furthermore, they
are not scale-free, since one has to select values for the radius within which the
population density is estimated and the dissimilarity indices computed. An-
other class of indices largely used in spatial statistics is that based on spatial
autocorrelations [12] sometimes coupled to a subsequent clustering. Although
easy to compute and helpful in practice, these require introducing a dependence
structure on the grid of spatial units.

Recently, multiscalar approaches have been proposed [13, 14, 15]. The method
we present here is multiscalar, and also both scale-free and non-parametric. It
aims at extracting all the information available in the data as scale is varied
from the finest possible grain to the whole region of analysis.

2 Method

The first step of our procedure consists in computing a dissimilarity trajectory
associated with each spatial unit in the dataset, and encoding the di↵erence
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between an expanding neighborhood around the starting unit and the whole
city. We assume here that the spatial information is available as a square lattice
at an already “basic” aggregated level, but other configurations such as geo-
localized individual data or aggregated irregular polygons may be similarly dealt
with. To each spatial unit (ui)i=1,...,N , is associated an empirical distribution
of some random variable, measured on the ni individuals belonging to unit ui.
We then sequentially aggregate around ui all other spatial units, according to a
rule consisting here in first randomly selecting the units situated at a supremum
distance equal to 1, then 2, and so on. The aggregation procedure is summarized
in Figure 1. At each step k of this procedure, k spatial units have been clustered,
including the starting one, and one may compute both the empirical distribution
f̂i,1:k of the aggregated population on the k units, as well as the dissimilarity

with respect to the distribution of the whole city, d
⇣

f̂i,1:k, f0

⌘

. To measure this

dissimilarity, we use the Kullback-Leibler (KL) divergence [16].

· · ·

· · ·

· · ·

Fig. 1: Aggregation procedure

Once one has aggregated all N spatial units around unit ui, one obtains

that f̂i,1:N = f

0

and d

⇣

f̂i,1:N , f

0

⌘

= 0. Each trajectory naturally converges

to the city average and the set of trajectories forms a fingerprint of the city
for the variable under consideration. But this convergence is achieved more or
less rapidly. If the city were well mixed, then each trajectory would converge
in just a few steps. The next stage in our procedure quantifies empirically the
speed at which this convergence is achieved individually, starting from any point
in the city. For a given spatial unit ui and for the associated KL-divergence

trajectory
⇣

ni,1:k, d

⇣

f̂i,1:k, f0

⌘⌘

k=1,...,N
, where ni,1:k is the size of the aggregated

population on the first k units around ui, we compute the convergence “time”
to the city. We define it, for any threshold � � 0, as the aggregated population
size for which the KL-divergence trajectory enters (and remains) within the
interval [0, �]:

⌧i,� = min
k=1,...,N

n

ni,1:k | d
⇣

f̂i,1:˜k, f0

⌘

 �, 8k̃ � k

o

Furthermore, we remove the arbitrariness induced by selecting an a priori thresh-
old � by integrating the convergence times, on all possible values of the threshold
(the upper bound �i,max

is necessarily finite and is equal to the maximum value
of the KL-divergence trajectory):

�i =

Z �i,max

0

⌧i,�d� .
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Eventually, our procedure produces a coe�cient �i for each spatial unit ui,
which encompasses the level of distortion in the image of the city perceived
from the corresponding spatial unit.

Defined as above, distortion coe�cients depend on the individual values of
the KL-divergence trajectories as well as on the number of inhabitants in the
city. Hence the need for a normalization constant, which will make inter-city
comparisons and inter-variable analyses possible. From geographical analysis
and information theory, we argue that the normalization constant should be
taken equal to the distortion coe�cient computed on the theoretical spatial con-
figuration which maximizes segregation. In the case of a Bernoulli variable, with
a proportion p

0

< 0.5 of group A, the trajectory with the maximum distortion
coe�cient is that consisting in first aggregating exclusively individuals of type A
and then all the individuals of type B. This normalization constant, �̃, depends
in this case on p

0

only and may be explicitly computed as:

�̃ = �p

0

log(p
0

) +

Z

1

p
0



p

0

x
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0
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0

)
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We illustrate next the proposed procedure by studying the spatial distribu-
tions of foreign-born inhabitants in the city of Paris.

3 Data and results

The data we use comes from the D4I challenge on the integration of migrants
in cities launched by the Joint Research Center of the European Commission
(https://bluehub.jrc.ec.europa.eu/datachallenge/). It is a large, high-
resolution dataset with counts of foreign-born inhabitants for each 100x100m
cell on a regular grid.

EU27 Non-EU Chinese Algerian
Migrant population 92,026 240,307 27,645 30,126

% of the entire city population 4.09% 10.69% 1.23% 1.34%
Max. theor. dist. coe↵. �̃ 0.269 0.404 0.138 0.146

Table 1: Proportions of certain migrant communities in the city of Paris

We applied our method on the entire commuting zone of Paris, and also
on three other European capitals (Rome, Madrid, Berlin).We present here the
Paris results on four communities – two very general (EU27 migrants and non-
EU migrants), and two specific (Chinese and Algerian). Paris, with its 2,248,435
inhabitants, was divided in 9,156 spatial units. The proportions of each of the
communities, as well as their maximum theoretical distortion coe�cient, used
hereafter as normalization constant, are summarized in Table 1. The local den-
sities per spatial unit are represented in Figure 2. As informative as they may
be, these maps do not provide any clear picture of the spatial patterns for each
community. Neither do they easily allow for comparisons. On the upper maps,
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Fig. 2: Local densities per spatial unit in logarithmic color scale (upper left - EU
migrants; upper right - non-EU migrants; lower left - Chinese-origin migrants;
lower right - Algerian-origin migrants). Grey areas correspond to densities with
less than 0.1% of the selected community.

one may easily spot the international Cité Universitaire in the south of the city,
almost exclusively inhabited by foreign students, as well as the northern dis-
tricts, where the presence of non-EU migrants seems to be more significant. The
Chinese-origin migrants are mainly located in some of the Rive-Droite neighbor-
hoods, as well as the south-east of the city, in the 13th district which is sometimes
termed “Paris’ Chinatown”. As for the Algerian migrants, they are mostly dis-
tributed in the northern, eastern and southern parts of the city, and this spatial
distribution is highly correlated with that of social housing and income [15]. Fur-
thermore, one may also notice that although these two communities are rather
similar in terms of global rates, each of them representing about 1.25-1.3% of
the entire population, the patterns of their spatial distributions appear to be
quite di↵erent, as we shall confirm next.

For each of the four communities, we computed the distortion coe�cients,
and then normalized them with respect to the corresponding theoretical max-
imum of segregation, �̃. The resulting distributions are plotted in Figure 3.
First, let us remark that the distributions of the EU and non-EU migrants are
much less dispersed, and with smaller mean values than those of the Chinese
and Algerian migrants. This is due to a smoothing e↵ect introduced by the
aggregation of many various origins, whereas the patterns of installation appear
to be particularly dependent on the country of origin. Second, the distribu-
tions of the distortion coe�cients for the Chinese and Algerian migrants have
larger means and larger dispersions, and also bimodal densities, which suggest
at least two categories of spatial units: some with low distortion, from where
the correct “perception of the city” is rapidly achieved, and some with high dis-
tortion, hence more segregated. This seems to be particularly the case for the
Chinese migrants distribution, which also has a heavy right tail, which implies
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the existence of some units, called “hot spots”, particularly segregated.
Finally, the normalized distortion coe�cients are mapped in Figure 4 in

logarithmic scale. Grey and blue areas correspond to low values of distortion,
hence to neighborhoods of the city from which the perception is roughly correct
on any scale, from a relatively short one. Red areas have high distortion, hence
are more segregated than the others. We see for instance that the North-North-
Eastern neighbourhoods are more segregated, for Chinese migrants, than Paris’
Chinatown. This fact has been totally unnoticed through other indices so far.
This is a typical finding of our method.

Fig. 3: Normalized distortion coe�cients distribution for the four communities
(left: estimated densities; right: boxplots).

Fig. 4: Normalized distortion coe�cients per spatial unit in logarithmic color
scale (upper left - EU migrants; upper right - non-EU migrants; lower left -
Chinese-origin migrants; lower right - Algerian-origin migrants). Grey areas
correspond to coe�cients less than 0.001.

4 Conclusion and perspectives

The method presented here provides a simple and powerful tool for visualizing
spatial segregation throughout cities and for any variable of interest.By con-
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struction, it is a scale-free algorithm, which is a step forward in the analysis of
spatial information. This method would also be of great interest on individual
geo-localized data, should such data become available – although scaling up to a
few dozens/hundreds of millions units would not be completely straightforward.
Individual-level data would also allow us to model trajectories by random walks,
which would provide theoretical results on first passage times, sojourn times and
statistical properties of the distortion coe�cients.
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